
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5451183/publications.pdf Version: 2024-02-01

LONC Y PARK

#	Article	IF	CITATIONS
1	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	9.4	652
2	ldentification of 23 new prostate cancer susceptibility loci using the iCOCS custom genotyping array. Nature Genetics, 2013, 45, 385-391.	9.4	492
3	A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nature Genetics, 2014, 46, 1103-1109.	9.4	408
4	Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nature Genetics, 2009, 41, 1116-1121.	9.4	389
5	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	9.4	264
6	Global Patterns of Prostate Cancer Incidence, Aggressiveness, and Mortality in Men of African Descent. Prostate Cancer, 2013, 2013, 1-12.	0.4	180
7	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COGS. Journal of Medical Genetics, 2016, 53, 800-811.	1.5	174
8	Examination of Broad Symptom Improvement Resulting From Mindfulness-Based Stress Reduction in Breast Cancer Survivors: A Randomized Controlled Trial. Journal of Clinical Oncology, 2016, 34, 2827-2834.	0.8	165
9	Course and Predictors of Cognitive Function in Patients With Prostate Cancer Receiving Androgen-Deprivation Therapy: A Controlled Comparison. Journal of Clinical Oncology, 2015, 33, 2021-2027.	0.8	163
10	Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6, 1052-1067.	7.7	157
11	Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts. BMJ: British Medical Journal, 2018, 360, j5757.	2.4	153
12	Mindfulness-Based Stress Reduction in Post-treatment Breast Cancer Patients: Immediate and Sustained Effects Across Multiple Symptom Clusters. Journal of Pain and Symptom Management, 2017, 53, 85-95.	0.6	120
13	A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Human Molecular Genetics, 2013, 22, 408-415.	1.4	118
14	Global Transcriptome Analysis of Formalin-Fixed Prostate Cancer Specimens Identifies Biomarkers of Disease Recurrence. Cancer Research, 2014, 74, 3228-3237.	0.4	111
15	The human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) DNA repair enzyme and its association with lung cancer risk. Pharmacogenetics and Genomics, 2004, 14, 103-109.	5.7	102
16	Deletion Polymorphism of UDP-Glucuronosyltransferase 2B17 and Risk of Prostate Cancer in African American and Caucasian Men. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 1473-1478.	1.1	96
17	TGF-Î ² induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer. Scientific Reports, 2020, 10, 10597.	1.6	93
18	Validation of Genome-Wide Prostate Cancer Associations in Men of African Descent. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 23-32.	1.1	88

#	Article	IF	CITATIONS
19	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	5.8	88
20	The effects of mindfulness-based stress reduction on objective and subjective sleep parameters in women with breast cancer: a randomized controlled trial. Psycho-Oncology, 2015, 24, 424-432.	1.0	85
21	miRNAs associated with prostate cancer risk and progression. BMC Urology, 2017, 17, 18.	0.6	79
22	ASP85TYR POLYMORPHISM IN THE UDP-GLUCURONOSYLTRANSFERASE (UGT) 2B15 GENE AND THE RISK OF PROSTATE CANCER. Journal of Urology, 2004, 171, 2484-2488.	0.2	67
23	Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Human Molecular Genetics, 2015, 24, 5589-5602.	1.4	67
24	Association Between Polymorphisms in the DNA Repair Genes X RCC1 and APE1 , and the Risk of Prostate Cancer in White and Black Americans. Journal of Urology, 2006, 175, 108-112.	0.2	65
25	Racial Differences in the Diagnosis and Treatment of Prostate Cancer. International Neurourology Journal, 2016, 20, S112-119.	0.5	63
26	Generalizability of established prostate cancer risk variants in men of <scp>A</scp> frican ancestry. International Journal of Cancer, 2015, 136, 1210-1217.	2.3	62
27	DNA Methylation in Promoter Region as Biomarkers in Prostate Cancer. Methods in Molecular Biology, 2012, 863, 67-109.	0.4	58
28	Two Novel Susceptibility Loci for Prostate Cancer in Men of African Ancestry. Journal of the National Cancer Institute, 2017, 109, .	3.0	57
29	Promoter Hypermethylation in Prostate Cancer. Cancer Control, 2010, 17, 245-255.	0.7	56
30	A Large-Scale Analysis of Genetic Variants within Putative miRNA Binding Sites in Prostate Cancer. Cancer Discovery, 2015, 5, 368-379.	7.7	56
31	Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1121-1129.	1.1	56
32	Silencing of the Candidate Tumor Suppressor Gene Solute Carrier Family 5 Member 8 (SLC5A8) in Human Pancreatic Cancer. Pancreas, 2008, 36, e32-e39.	0.5	55
33	Prediction of individual genetic risk to prostate cancer using a polygenic score. Prostate, 2015, 75, 1467-1474.	1.2	54
34	<i>CHEK2</i> ^{â^—} 1100delC Mutation and Risk of Prostate Cancer. Prostate Cancer, 2014, 2014, 1-9.	0.4	51
35	Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation. Nature Communications, 2016, 7, 10979.	5.8	50
36	Micro-RNA-186-5p inhibition attenuates proliferation, anchorage independent growth and invasion in metastatic prostate cancer cells. BMC Cancer, 2018, 18, 421.	1.1	47

JONG Y PARK

#	Article	IF	CITATIONS
37	Comparative Genomics Reveals Distinct Immune-oncologic Pathways in African American Men with Prostate Cancer. Clinical Cancer Research, 2021, 27, 320-329.	3.2	46
38	Association Between Polymorphisms in HSD3B1 and UGT2B17 and Prostate Cancer Risk. Urology, 2007, 70, 374-379.	0.5	43
39	Germline variation at 8q24 and prostate cancer risk in men of European ancestry. Nature Communications, 2018, 9, 4616.	5.8	43
40	miR-21, miR-221 and miR-222 expression and prostate cancer recurrence among obese and non-obese cases. Asian Journal of Andrology, 2013, 15, 226-230.	0.8	42
41	Randomized, placebo-controlled trial evaluating the safety of one-year administration of green tea catechins. Oncotarget, 2016, 7, 70794-70802.	0.8	41
42	Candidate tumor suppressor gene SLC5A8 is frequently down-regulated by promoter hypermethylation in prostate tumor. Cancer Detection and Prevention, 2007, 31, 359-365.	2.1	40
43	SNP-SNP Interaction Network in Angiogenesis Genes Associated with Prostate Cancer Aggressiveness. PLoS ONE, 2013, 8, e59688.	1.1	40
44	Polygenic hazard score is associated with prostate cancer in multi-ethnic populations. Nature Communications, 2021, 12, 1236.	5.8	40
45	Genetic predictors of fatigue in prostate cancer patients treated with androgen deprivation therapy: Preliminary findings. Brain, Behavior, and Immunity, 2012, 26, 1030-1036.	2.0	36
46	Gene variants in the angiogenesis pathway and prostate cancer. Carcinogenesis, 2012, 33, 1259-1269.	1.3	35
47	A Germline Variant at 8q24 Contributes to Familial Clustering of Prostate Cancer in Men of African Ancestry. European Urology, 2020, 78, 316-320.	0.9	32
48	Multi-institutional prostate cancer study of genetic susceptibility in populations of African descent. Carcinogenesis, 2011, 32, 1361-1365.	1.3	31
49	Africanâ€American men and prostate cancerâ€specific mortality: a competing risk analysis of a large institutional cohort, 1989–2015. Cancer Medicine, 2018, 7, 2160-2171.	1.3	29
50	Alcohol consumption and prostate cancer incidence and progression: A Mendelian randomisation study. International Journal of Cancer, 2017, 140, 75-85.	2.3	28
51	An integrative multi-omics analysis to identify candidate DNA methylation biomarkers related to prostate cancer risk. Nature Communications, 2020, 11, 3905.	5.8	28
52	Genome-Wide Association Study of Prostate Cancer–Specific Survival. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1796-1800.	1.1	27
53	Hypoxia-induced cancer stemness acquisition is associated with CXCR4 activation by its aberrant promoter demethylation. BMC Cancer, 2019, 19, 148.	1.1	27
54	A Genetic Risk Score to Personalize Prostate Cancer Screening, Applied to Population Data. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1731-1738.	1.1	27

#	Article	IF	CITATIONS
55	SLC5A8 Gene, A Transporter of Butyrate: A Gut Flora Metabolite, Is Frequently Methylated in African American Colon Adenomas. PLoS ONE, 2011, 6, e20216.	1.1	27
56	Gene silencing of SLC5A8 identified by genome-wide methylation profiling in lung cancer. Lung Cancer, 2013, 79, 198-204.	0.9	26
57	Single Nucleotide Polymorphisms in DNA Repair Genes and Prostate Cancer Risk. Methods in Molecular Biology, 2009, 471, 361-385.	0.4	25
58	Africanâ€specific improvement of a polygenic hazard score for age at diagnosis of prostate cancer. International Journal of Cancer, 2021, 148, 99-105.	2.3	24
59	CpG island hypermethylation profiling of lung cancer using restriction landmark genomic scanning (RLGS) analysis. Cancer Biomarkers, 2005, 1, 193-200.	0.8	23
60	Safety and Chemopreventive Effect of Polyphenon E in Preventing Early and Metastatic Progression of Prostate Cancer in TRAMP Mice. Cancer Prevention Research, 2014, 7, 435-444.	0.7	23
61	Marital status and prostate cancer incidence: a pooled analysis of 12 case–control studies from the PRACTICAL consortium. European Journal of Epidemiology, 2021, 36, 913-925.	2.5	23
62	RHCG and TCAF1 promoter hypermethylation predicts biochemical recurrence in prostate cancer patients treated by radical prostatectomy. Oncotarget, 2017, 8, 5774-5788.	0.8	22
63	Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 208-216.	1.1	21
64	Moderating Effects of Genetic Polymorphisms on Improvements in Cognitive Impairment in Breast Cancer Survivors Participating in a 6-Week Mindfulness-Based Stress Reduction Program. Biological Research for Nursing, 2015, 17, 393-404.	1.0	19
65	Commercial Gene Expression Tests for Prostate Cancer Prognosis Provide Paradoxical Estimates of Race-Specific Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 246-253.	1.1	19
66	African American Specific Gene Panel Predictive of Poor Prostate Cancer Outcome. Journal of Urology, 2019, 202, 247-255.	0.2	19
67	Gene Variants in Angiogenesis and Lymphangiogenesis and Cutaneous Melanoma Progression. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 827-834.	1.1	17
68	Course and Moderators of Hot Flash Interference during Androgen Deprivation Therapy for Prostate Cancer: A Matched Comparison. Journal of Urology, 2015, 194, 690-695.	0.2	17
69	Tobacco smoking-response genes in blood and buccal cells. Toxicology Letters, 2015, 232, 429-437.	0.4	17
70	Multifaceted Function of MicroRNA-299-3p Fosters an Antitumor Environment Through Modulation of Androgen Receptor and VEGFA Signaling Pathways in Prostate Cancer. Scientific Reports, 2020, 10, 5167.	1.6	17
71	miR-1207-3p Is a Novel Prognostic Biomarker of Prostate Cancer. Translational Oncology, 2016, 9, 236-241.	1.7	16
72	Influence of gene expression on survival of clear cell renal cell carcinoma. Cancer Medicine, 2020, 9, 8662-8675.	1.3	16

#	Article	IF	CITATIONS
73	The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers, 2020, 12, 3254.	1.7	16
74	Additional SNPs improve risk stratification of a polygenic hazard score for prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 532-541.	2.0	16
75	Variation in <i>HNF1B</i> and Obesity May Influence Prostate Cancer Risk in African American Men: A Pilot Study. Prostate Cancer, 2013, 2013, 1-7.	0.4	14
76	Interactions of <i>PVT1</i> and <i>CASC11</i> on Prostate Cancer Risk in African Americans. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 1067-1075.	1.1	14
77	The effect of sample size on polygenic hazard models for prostate cancer. European Journal of Human Genetics, 2020, 28, 1467-1475.	1.4	14
78	Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score. Prostate Cancer and Prostatic Diseases, 2022, 25, 755-761.	2.0	14
79	Geospatial Cellular Distribution of Cancer-Associated Fibroblasts Significantly Impacts Clinical Outcomes in Metastatic Clear Cell Renal Cell Carcinoma. Cancers, 2021, 13, 3743.	1.7	13
80	SLC5A8 Nuclear Translocation and Loss of Expression are Associated With Poor Outcome in Pancreatic Ductal Adenocarcinoma. Pancreas, 2012, 41, 904-909.	0.5	12
81	Mindfulness-based stress reduction for breast cancer survivors (MBSR(BC)): evaluating mediators of psychological and physical outcomes in a large randomized controlled trial. Journal of Behavioral Medicine, 2021, 44, 591-604.	1.1	12
82	Promoter Hypermethylation as a Biomarker in Prostate Adenocarcinoma. Methods in Molecular Biology, 2015, 1238, 607-625.	0.4	12
83	Silencing of miR-137 by aberrant promoter hypermethylation in surgically resected lung cancer. Lung Cancer, 2015, 89, 99-103.	0.9	11
84	SNP interaction pattern identifier (SIPI): an intensive search for SNP–SNP interaction patterns. Bioinformatics, 2017, 33, 822-833.	1.8	11
85	A test of dopamine hyper- and hyposensitivity in alcohol use. Addictive Behaviors, 2019, 90, 395-401.	1.7	11
86	Coexpression and expression quantitative trait loci analyses of the angiogenesis gene-gene interaction network in prostate cancer. Translational Cancer Research, 2016, 5, S951-S963.	0.4	11
87	Detoxification of chlorella supplement on heterocyclic amines in Korean young adults. Environmental Toxicology and Pharmacology, 2015, 39, 441-446.	2.0	10
88	Neural outcome processing of peer-influenced risk-taking behavior in late adolescence: Preliminary evidence for gene × environment interactions Experimental and Clinical Psychopharmacology, 2017, 25, 31-40.	1.3	10
89	Tristetraprolin Is a Prognostic Biomarker for Poor Outcomes among Patients with Low-Grade Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 1376-1383.	1.1	9
90	Optimizing Time to Treatment to Achieve Durable Biochemical Disease Control after Surgery in Prostate Cancer: A Multi-Institutional Cohort Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 570-577.	1.1	9

#	Article	IF	CITATIONS
91	Performance of African-ancestry-specific polygenic hazard score varies according to local ancestry in 8q24. Prostate Cancer and Prostatic Diseases, 2022, 25, 229-237.	2.0	9
92	Translational genomic research: the role of genetic polymorphisms in MBSR program among breast cancer survivors (MBSR[BC]). Translational Behavioral Medicine, 2019, 9, 693-702.	1.2	8
93	Height, selected genetic markers and prostate cancer risk: results from the PRACTICAL consortium. British Journal of Cancer, 2017, 117, 734-743.	2.9	7
94	Aptamer Selection for Detecting Molecular Target Using Cell-SELEX (Systematic Evolution of Ligands) Tj ETQq0 (0 rgBT /0 0 : 4	Overlock 10 Th
95	Protein Expressions and Genetic Variations of SLC5A8 in Prostate Cancer Risk and Aggressiveness. Urology, 2011, 78, 971.e1-971.e9.	0.5	6
96	Role of <i>p73</i> Dinucleotide Polymorphism in Prostate Cancer and p73 Protein Isoform Balance. Prostate Cancer, 2014, 2014, 1-9.	0.4	6
97	Novel strategy for disease risk prediction incorporating predicted gene expression and DNA methylation data: a multiâ€phased study of prostate cancer. Cancer Communications, 2021, 41, 1387-1397.	3.7	6
98	Chemoprevention in African American Men with Prostate Cancer. Cancer Control, 2016, 23, 415-423.	0.7	5
99	Comparison of PNA Clamping-assisted Fluorescence Melting Curve Analysis and PNA Clamping in Detecting <i>EGFR</i> Mutations in Matched Tumor Tissue, Cell Block, Pleural Effusion and Blood of Lung Cancer Patients With Malignant Pleural Effusion. In Vivo, 2019, 33, 595-603.	0.6	5

100	KLK3 SNP–SNP interactions for prediction of prostate cancer aggressiveness. Scientific Reports, 2021, 11, 9264.	1.6	5
101	A polymorphism in the promoter of FRAS1 is a candidate SNP associated with metastatic prostate cancer. Prostate, 2021, 81, 683-693.	1.2	5
102	TMPRSS2â€ERG fusion impacts anterior tumor location in men with prostate cancer. Prostate, 2021, 81, 109-117.	1.2	4
103	Differential DNA Methylation in Prostate Tumors from Puerto Rican Men. International Journal of Molecular Sciences, 2021, 22, 733.	1.8	4
104	Anticancer function of <scp>microRNA</scp> â€30e is mediated by negative regulation of <scp><i>HELLPAR</i></scp> , a noncoding <scp>macroRNA</scp> , and genes involved in ubiquitination and cell cycle progression in prostate cancer. Molecular Oncology, 2022, 16, 2936-2958.	2.1	4
105	AA9int: SNP interaction pattern search using non-hierarchical additive model set. Bioinformatics, 2018, 34, 4141-4150.	1.8	3
106	Exploring Prostate Cancer Patients' Interest and Preferences for Receiving Genetic Risk Information About Cancer Aggressiveness. American Journal of Men's Health, 2020, 14, 155798832091962.	0.7	3
107	Alcohol Intake and Alcohol–SNP Interactions Associated with Prostate Cancer Aggressiveness. Journal of Clinical Medicine, 2021, 10, 553.	1.0	3

8, S378-S388.	108	Chronic nicotine exposure affects programmed death-ligand 1 expression and sensitivity to epidermal growth factor receptor-tyrosine kinase inhibitor in lung cancer. Translational Cancer Research, 2019, 8, S378-S388.	0.4	:	3
---------------	-----	---	-----	---	---

#	Article	IF	CITATIONS
109	Substantial Gleason reclassification in Black men with national comprehensive cancer network low-risk prostate cancer – A propensity score analysis. Prostate Cancer and Prostatic Diseases, 2022, 25, 547-552.	2.0	3
110	Epigenetic modulation of Chlorella (Chlorella vulgaris) on exposure to polycyclic aromatic hydrocarbons. Environmental Toxicology and Pharmacology, 2015, 40, 758-763.	2.0	2
111	SNPxE: SNP-environment interaction pattern identifier. BMC Bioinformatics, 2021, 22, 425.	1.2	2
112	Telomere length in peripheral blood leukocytes and risk of renal cell carcinoma. Translational Cancer Research, 2019, 8, S397-S403.	0.4	2
113	Translational Genomic Research: The Association between Genetic Profiles and Cognitive Functioning or Cardiac Function Among Breast Cancer Survivors Completing Chemotherapy. Biological Research for Nursing, 2022, , 109980042210943.	1.0	2
114	Reduced DNA Repair Capacity in Prostate Cancer Patients: A Phenotypic Approach Using the CometChip. Cancers, 2022, 14, 3117.	1.7	2
115	Comparison of PANAMutyper and PNAClamp for Detecting KRAS Mutations from Patients With Malignant Pleural Effusion. In Vivo, 2019, 33, 945-954.	0.6	1
116	Dysregulation of DNA Methylation and Epigenetic Clocks in Prostate Cancer among Puerto Rican Men. Biomolecules, 2022, 12, 2.	1.8	1
117	Therapeutic applications of three-dimensional organoid models in lung cancer. Organoid, 0, 1, e6.	0.0	0
118	p73 Gene Promoter Methylation Patterns in Prostate Cancer Cell Lines. FASEB Journal, 2018, 32, 787.24.	0.2	0
119	Polyphenon E Treatment Alters Gene Expression in Prostate Cancer Cells. FASEB Journal, 2018, 32, 804.61.	0.2	0
120	Intake Patterns of Specific Alcoholic Beverages by Prostate Cancer Status. Cancers, 2022, 14, 1981.	1.7	0