Chun-ming Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5450664/publications.pdf

Version: 2024-02-01

33 papers	1,952 citations	17 h-index	395343 33 g-index
33	33 docs citations	33	2394
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Colonization of nasal cavities by <i>Staphylococcus epidermidis</i> mitigates SARSâ€CoVâ€2 nucleocapsid phosphoproteinâ€induced interleukin (IL)â€6 in the lung. Microbial Biotechnology, 2022, 15, 1984-1994.	2.0	7
2	Probiotic Activity of Staphylococcus epidermidis Induces Collagen Type I Production through FFaR2/p-ERK Signaling. International Journal of Molecular Sciences, 2021, 22, 1414.	1.8	9
3	Propionic acid produced by Cutibacterium acnes fermentation ameliorates ultraviolet B-induced melanin synthesis. Scientific Reports, 2021, 11, 11980.	1.6	17
4	Electricity-producing Staphylococcus epidermidis counteracts Cutibacterium acnes. Scientific Reports, 2021, 11, 12001.	1.6	13
5	Gut probiotic Lactobacillus rhamnosus attenuates PDE4B-mediated interleukin-6 induced by SARS-CoV-2 membrane glycoprotein. Journal of Nutritional Biochemistry, 2021, 98, 108821.	1.9	13
6	Production of electricity and reduction of high-fat diet-induced IL-6 by glucose fermentation of Leuconostoc mesenteroides. Biochemical and Biophysical Research Communications, 2020, 533, 651-656.	1.0	7
7	Mouse Abdominal Fat Depots Reduced by Butyric Acid-Producing Leuconostoc mesenteroides. Microorganisms, 2020, 8, 1180.	1.6	6
8	PEG-8 Laurate Fermentation of Staphylococcus epidermidis Reduces the Required Dose of Clindamycin Against Cutibacterium acnes. International Journal of Molecular Sciences, 2020, 21, 5103.	1.8	4
9	Skin Bacteria Mediate Glycerol Fermentation to Produce Electricity and Resist UV-B. Microorganisms, 2020, 8, 1092.	1.6	16
10	Repurposing INCI-registered compounds as skin prebiotics for probiotic Staphylococcus epidermidis against UV-B. Scientific Reports, 2020, 10, 21585.	1.6	7
11	Leuconostoc mesenteroides fermentation produces butyric acid and mediates Ffar2 to regulate blood glucose and insulin in type 1 diabetic mice. Scientific Reports, 2020, 10, 7928.	1.6	29
12	Skin Cutibacterium acnes Mediates Fermentation to Suppress the Calcium Phosphate-Induced Itching: A Butyric Acid Derivative with Potential for Uremic Pruritus. Journal of Clinical Medicine, 2020, 9, 312.	1.0	18
13	Leuconostoc mesenteroides mediates an electrogenic pathway to attenuate the accumulation of abdominal fat mass induced by high fat diet. Scientific Reports, 2020, 10, 21916.	1.6	3
14	ILâ€6/pâ€BTK/pâ€ERK signaling mediates calcium phosphateâ€induced pruritus. FASEB Journal, 2019, 33, 12036-12046.	0.2	21
15	5-methyl Furfural Reduces the Production of Malodors by Inhibiting Sodium l-lactate Fermentation of Staphylococcus epidermidis: Implication for Deodorants Targeting the Fermenting Skin Microbiome. Microorganisms, 2019, 7, 239.	1.6	7
16	Butyric Acid from Probiotic Staphylococcus epidermidis in the Skin Microbiome Down-Regulates the Ultraviolet-Induced Pro-Inflammatory IL-6 Cytokine via Short-Chain Fatty Acid Receptor. International Journal of Molecular Sciences, 2019, 20, 4477.	1.8	57
17	A Microtube Array Membrane (MTAM) Encapsulated Live Fermenting Staphylococcus epidermidis as a Skin Probiotic Patch against Cutibacterium acnes. International Journal of Molecular Sciences, 2019, 20, 14.	1.8	40
18	A Derivative of Butyric Acid, the Fermentation Metabolite of Staphylococcus epidermidis, Inhibits the Growth of a Staphylococcus aureus Strain Isolated from Atopic Dermatitis Patients. Toxins, 2019, 11, 311.	1.5	38

#	Article	IF	CITATIONS
19	Prospects of acne vaccines targeting secreted virulence factors of Cutibacterium acnes. Expert Review of Vaccines, 2019, 18, 433-437.	2.0	12
20	The Anti-Inflammatory Activities of Propionibacterium acnes CAMP Factor-Targeted Acne Vaccines. Journal of Investigative Dermatology, 2018, 138, 2355-2364.	0.3	43
21	Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillinâ€resistant <i>Staphylococcus aureus</i> . Biotechnology Journal, 2017, 12, .	1.8	31
22	A Co-Drug of Butyric Acid Derived from Fermentation Metabolites of the Human Skin Microbiome Stimulates Adipogenic Differentiation of Adipose-Derived Stem Cells: Implications in Tissue Augmentation. Journal of Investigative Dermatology, 2017, 137, 46-56.	0.3	13
23	The mPEG-PCL Copolymer for Selective Fermentation of Staphylococcus lugdunensis Against Candida parapsilosis in the Human Microbiome. Journal of Microbial & Biochemical Technology, 2016, 8, 259-265.	0.2	6
24	A Precision Microbiome Approach Using Sucrose for Selective Augmentation of Staphylococcus epidermidis Fermentation against Propionibacterium acnes. International Journal of Molecular Sciences, 2016, 17, 1870.	1.8	50
25	Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Science Immunology, $2016,1,\ldots$	5.6	109
26	<i>Propionibacterium acnes</i> in the Pathogenesis and Immunotherapy of Acne Vulgaris. Current Drug Metabolism, 2015, 16, 245-254.	0.7	38
27	Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Applied Microbiology and Biotechnology, 2014, 98, 411-424.	1.7	205
28	Fermentation of Propionibacterium acnes, a Commensal Bacterium in the Human Skin Microbiome, as Skin Probiotics against Methicillin-Resistant Staphylococcus aureus. PLoS ONE, 2013, 8, e55380.	1.1	231
29	Passive immunoprotection targeting a secreted CAMP factor of Propionibacterium acnes as a novel immunotherapeutic for acne vulgaris. Vaccine, 2011, 29, 3230-3238.	1.7	53
30	Propionibacterium acnes CAMP Factor and Host Acid Sphingomyelinase Contribute to Bacterial Virulence: Potential Targets for Inflammatory Acne Treatment. PLoS ONE, 2011, 6, e14797.	1.1	98
31	Staphylococcus aureus Hijacks a Skin Commensal to Intensify Its Virulence: Immunization Targeting \hat{I}^2 -Hemolysin and CAMP Factor. Journal of Investigative Dermatology, 2011, 131, 401-409.	0.3	63
32	Commensal bacteria regulate Toll-like receptor 3–dependent inflammation after skin injury. Nature Medicine, 2009, 15, 1377-1382.	15.2	620
33	Vaccination Targeting a Surface Sialidase of P. acnes: Implication for New Treatment of Acne Vulgaris. PLoS ONE, 2008, 3, e1551.	1.1	68