Hao Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5450406/publications.pdf

Version: 2024-02-01

82 papers 3,918 citations

32 h-index 60 g-index

84 all docs

84 docs citations

84 times ranked 5167 citing authors

#	Article	IF	Citations
1	Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuliâ€Responsive, Toxicity, Immunogenicity, and Clinical Translation. Advanced Science, 2022, 9, e2102678.	5.6	76
2	Quantum dots' size matters for balancing their quantity and quality in label materials to improve lateral flow immunoassay performance for C-reactive protein determination. Biosensors and Bioelectronics, 2022, 199, 113892.	5. 3	12
3	In-situ synthesis of Drug-Containing bactericidal rough silica nanoparticles for antibacterial coating. Chemical Engineering Journal, 2022, 440, 135837.	6.6	7
4	Pore architecture influences the enzyme immobilization performance of mesoporous silica nanospheres. Microporous and Mesoporous Materials, 2022, 338, 111963.	2.2	10
5	Co-Delivery of Nano-Silver and Vancomycin via Silica Nanopollens for Enhanced Antibacterial Functions. Antibiotics, 2022, 11, 685.	1.5	6
6	Alginate Particles for Enzyme Immobilization Using Spray Drying. Journal of Agricultural and Food Chemistry, 2022, 70, 7139-7147.	2.4	12
7	Nanostructured Organosilica Nitric Oxide Donors Intrinsically Regulate Macrophage Polarization with Antitumor Effect. ACS Nano, 2022, 16, 10943-10957.	7.3	33
8	Nanotechnology enabled reactive species regulation in biosystems for boosting cancer immunotherapy. Nano Today, 2021, 36, 101035.	6.2	28
9	Large scale synthesis of self-assembled shuttlecock-shaped silica nanoparticles with minimized drag as advanced catalytic nanomotors. Chemical Engineering Journal, 2021, 417, 127971.	6.6	9
10	Confined growth of ZIF-8 in dendritic mesoporous organosilica nanoparticles as bioregulators for enhanced mRNA delivery <i>in vivo</i> . National Science Review, 2021, 8, nwaa268.	4.6	21
11	Rambutan-like silica nanoparticles at tailored particle sizes for plasmid DNA delivery. Journal of Materials Science, 2021, 56, 5830-5844.	1.7	12
12	The Role of Dendritic Mesoporous Silica Nanoparticles' Size for Quantum Dots Enrichment and Lateral Flow Immunoassay Performance. Small Methods, 2021, 5, e2000924.	4.6	30
13	Rational Design of Dendritic Mesoporous Silica Nanoparticles' Surface Chemistry for Quantum Dot Enrichment and an Ultrasensitive Lateral Flow Immunoassay. ACS Applied Materials & Amp; Interfaces, 2021, 13, 21507-21515.	4.0	34
14	Ferroptosis-Strengthened Metabolic and Inflammatory Regulation of Tumor-Associated Macrophages Provokes Potent Tumoricidal Activities. Nano Letters, 2021, 21, 6471-6479.	4.5	65
15	Calcium-Doped Silica Nanoparticles Mixed with Phosphate-Doped Silica Nanoparticles for Rapid and Stable Occlusion of Dentin Tubules. ACS Applied Nano Materials, 2021, 4, 8761-8769.	2.4	4
16	MnO ₂ Nanoflowers Induce Immunogenic Cell Death under Nutrient Deprivation: Enabling an Orchestrated Cancer Starvationâ€Immunotherapy. Advanced Science, 2021, 8, 2002667.	5.6	34
17	Asymmetric Silica Nanoparticles with Tailored Spiky Coverage Derived from Silica–Polymer Cooperative Assembly for Enhanced Hemocompatibility and Gene Delivery. ACS Applied Materials & Interfaces, 2021, 13, 50695-50704.	4.0	14
18	Functional Nanoparticles with a Reducible Tetrasulfide Motif to Upregulate mRNA Translation and Enhance Transfection in Hardâ€ŧoâ€₹ransfect Cells. Angewandte Chemie, 2020, 132, 2717-2721.	1.6	13

#	Article	IF	CITATIONS
19	Fractal-in-a-Sphere: Confined Self-Assembly of Fractal Silica Nanoparticles. Chemistry of Materials, 2020, 32, 341-347.	3.2	38
20	Functional Nanoparticles with a Reducible Tetrasulfide Motif to Upregulate mRNA Translation and Enhance Transfection in Hardâ€toâ€Transfect Cells. Angewandte Chemie - International Edition, 2020, 59, 2695-2699.	7.2	49
21	Antibioticâ€Free Antibacterial Strategies Enabled by Nanomaterials: Progress and Perspectives. Advanced Materials, 2020, 32, e1904106.	11.1	368
22	DNA Vaccine Mediated by Rambutanâ€Like Mesoporous Silica Nanoparticles. Advanced Therapeutics, 2020, 3, 1900154.	1.6	17
23	Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators. Accounts of Chemical Research, 2020, 53, 1545-1556.	7.6	128
24	Openwork@Dendritic Mesoporous Silica Nanoparticles for Lactate Depletion and Tumor Microenvironment Regulation. Angewandte Chemie - International Edition, 2020, 59, 22054-22062.	7.2	76
25	Openwork@Dendritic Mesoporous Silica Nanoparticles for Lactate Depletion and Tumor Microenvironment Regulation. Angewandte Chemie, 2020, 132, 22238-22246.	1.6	16
26	Dendritic Mesoporous Silica Nanoparticle Adjuvants Modified with Binuclear Aluminum Complex: Coordination Chemistry Dictates Adjuvanticity. Angewandte Chemie - International Edition, 2020, 59, 19610-19617.	7.2	22
27	Dendritic Mesoporous Silica Nanoparticle Adjuvants Modified with Binuclear Aluminum Complex: Coordination Chemistry Dictates Adjuvanticity. Angewandte Chemie, 2020, 132, 19778-19785.	1.6	3
28	Post translational modification-assisted cancer immunotherapy for effective breast cancer treatment. Chemical Science, 2020, 11, 10421-10430.	3.7	14
29	Antibioticâ€Free Strategies: Antibioticâ€Free Antibacterial Strategies Enabled by Nanomaterials: Progress and Perspectives (Adv. Mater. 18/2020). Advanced Materials, 2020, 32, 2070138.	11.1	14
30	Shaping Nanoparticles for Interface Catalysis: Concave Hollow Spheres via Deflation–Inflation Asymmetric Growth. Advanced Science, 2020, 7, 2000393.	5.6	30
31	Lyophilization enabled disentanglement of polyethylenimine on rambutan-like silica nanoparticles for enhanced plasmid DNA delivery. Journal of Materials Chemistry B, 2020, 8, 4593-4600.	2.9	5
32	Ultralarge interlayer distance and C,N-codoping enable superior sodium storage capabilities of MoS2 nanoonions. Chemical Engineering Journal, 2019, 378, 122249.	6.6	39
33	Heterogeneous Contraction-Mediated Asymmetric Carbon Colloids. , 2019, 1, 290-296.		20
34	Nanotherapy: Nanotherapy in Joints: Increasing Endogenous Hyaluronan Production by Delivering Hyaluronan Synthase 2 (Adv. Mater. 46/2019). Advanced Materials, 2019, 31, 1970331.	11.1	4
35	Modulating Ion Diffusivity and Electrode Conductivity of Carbon Nanotube@Mesoporous Carbon Fibers for High Performance Aluminum–Selenium Batteries. Small, 2019, 15, e1904310.	5.2	33
36	Responsively Aggregatable Sub-6 nm Nanochelators Induce Simultaneous Antiangiogenesis and Vascular Obstruction for Enhanced Tumor Vasculature Targeted Therapy. Nano Letters, 2019, 19, 7750-7759.	4.5	29

#	Article	IF	Citations
37	Nanotherapy in Joints: Increasing Endogenous Hyaluronan Production by Delivering Hyaluronan Synthase 2. Advanced Materials, 2019, 31, e1904535.	11.1	51
38	Hollow Nanostructures: Electron Tomography: A Unique Tool Solving Intricate Hollow Nanostructures (Adv. Mater. 38/2019). Advanced Materials, 2019, 31, 1970272.	11.1	1
39	Mechanism of Iron Oxide-Induced Macrophage Activation: The Impact of Composition and the Underlying Signaling Pathway. Journal of the American Chemical Society, 2019, 141, 6122-6126.	6.6	126
40	Coreâ€"Shell Prussian Blue Analogs with Compositional Heterogeneity and Open Cages for Oxygen Evolution Reaction. Advanced Science, 2019, 6, 1801901.	5.6	86
41	Bottom-up self-assembly of heterotrimeric nanoparticles and their secondary Janus generations. Chemical Science, 2019, 10, 10388-10394.	3.7	26
42	Electron Tomography: A Unique Tool Solving Intricate Hollow Nanostructures. Advanced Materials, 2019, 31, e1801564.	11.1	43
43	Rýcktitelbild: Oxidative Dissolution of Resoles: A Versatile Approach to Intricate Nanostructures (Angew. Chem. 3/2018). Angewandte Chemie, 2018, 130, 862-862.	1.6	0
44	Oxidative Dissolution of Resoles: A Versatile Approach to Intricate Nanostructures. Angewandte Chemie, 2018, 130, 662-666.	1.6	1
45	Hollow Mesoporous Carbon Nanocubes: Rigidâ€Interfaceâ€Induced Outward Contraction of Metalâ€Organic Frameworks. Advanced Functional Materials, 2018, 28, 1705253.	7.8	100
46	Oxidative Dissolution of Resoles: A Versatile Approach to Intricate Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 654-658.	7.2	16
47	Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and Co-delivery platform for enhanced cancer immunotherapy. Biomaterials, 2018, 175, 82-92.	5.7	135
48	Room temperature synthesis of dendritic mesoporous silica nanoparticles with small sizes and enhanced mRNA delivery performance. Journal of Materials Chemistry B, 2018, 6, 4089-4095.	2.9	52
49	Hybrid Nanoreactors: Enabling an Offâ€theâ€Shelf Strategy for Concurrently Enhanced Chemoâ€immunotherapy. Angewandte Chemie - International Edition, 2018, 57, 11764-11769.	7.2	108
50	Hybrid Nanoreactors: Enabling an Offâ€theâ€Shelf Strategy for Concurrently Enhanced Chemoâ€immunotherapy. Angewandte Chemie, 2018, 130, 11938-11943.	1.6	27
51	Superhydrophobic dendritic mesoporous organosilica nano-particles with ultrahigh-content of gradient organic moieties. Journal of Materials Chemistry A, 2018, 6, 17579-17586.	5.2	16
52	Kinetically Controlled Dendritic Mesoporous Silica Nanoparticles: From Dahlia- to Pomegranate-like Structures by Micelle Filling. Chemistry of Materials, 2018, 30, 5770-5776.	3.2	45
53	Asymmetric Silica Nanoparticles with Tunable Head–Tail Structures Enhance Hemocompatibility and Maturation of Immune Cells. Journal of the American Chemical Society, 2017, 139, 6321-6328.	6.6	105
54	Single-Layered Mesoporous Carbon Sandwiched Graphene Nanosheets for High Performance Ionic Liquid Supercapacitors. Journal of Physical Chemistry C, 2017, 121, 23947-23954.	1.5	12

#	Article	IF	CITATIONS
55	Glucose-Responsive Nanosystem Mimicking the Physiological Insulin Secretion via an Enzyme–Polymer Layer-by-Layer Coating Strategy. Chemistry of Materials, 2017, 29, 7725-7732.	3.2	46
56	Plasmid DNA Delivery: Nanotopography Matters. Journal of the American Chemical Society, 2017, 139, 18247-18254.	6.6	109
57	Al-modified dendritic mesoporous silica nanospheres-supported NiMo catalysts for the hydrodesulfurization of dibenzothiophene: Efficient accessibility of active sites and suitable metal–support interaction. Journal of Catalysis, 2017, 356, 269-282.	3.1	81
58	Mg(OH) ₂ –MgO@reduced graphene oxide nanocomposites: the roles of composition and nanostructure in arsenite sorption. Journal of Materials Chemistry A, 2017, 5, 24484-24492.	5.2	26
59	Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis. Nano Research, 2017, 10, 605-617.	5.8	63
60	Rattle-type magnetic mesoporous hollow carbon as a high-performance and reusable adsorbent for water treatment. Chemosphere, 2017, 166, 109-117.	4.2	24
61	Application of <i>Bacillus</i> spp. in Pilot Test of Microbial Huff and Puff to Improve Heavy Oil Recovery. Energy & Samp; Fuels, 2017, 31, 13724-13732.	2.5	23
62	In situ Stöber templating: facile synthesis of hollow mesoporous carbon spheres from silica–polymer composites for ultra-high level in-cavity adsorption. Journal of Materials Chemistry A, 2016, 4, 9063-9071.	5.2	73
63	Silica Nanopollens Enhance Adhesion for Long-Term Bacterial Inhibition. Journal of the American Chemical Society, 2016, 138, 6455-6462.	6.6	219
64	Mesoporous Magnesium Oxide Hollow Spheres as Superior Arsenite Adsorbent: Synthesis and Adsorption Behavior. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25306-25312.	4.0	69
65	Encapsulation of selenium sulfide in double-layered hollow carbon spheres as advanced electrode material for lithium storage. Nano Research, 2016, 9, 3725-3734.	5.8	45
66	Hollow mesoporous carbon nanocarriers for vancomycin delivery: understanding the structure–release relationship for prolonged antibacterial performance. Journal of Materials Chemistry B, 2016, 4, 7014-7021.	2.9	30
67	A Vesicle Supraâ€Assembly Approach to Synthesize Amineâ€Functionalized Hollow Dendritic Mesoporous Silica Nanospheres for Protein Delivery. Small, 2016, 12, 5169-5177.	5.2	72
68	Anion Assisted Synthesis of Large Pore Hollow Dendritic Mesoporous Organosilica Nanoparticles: Understanding the Composition Gradient. Chemistry of Materials, 2016, 28, 704-707.	3.2	199
69	From Helixes to Mesostructures: Evolution of Mesoporous Silica Shells on Single-Walled Carbon Nanotubes. Chemistry of Materials, 2016, 28, 936-942.	3.2	17
70	Small-sized and large-pore dendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery. Journal of Materials Chemistry B, 2016, 4, 2646-2653.	2.9	87
71	Monodispersed colloidal zinc oxide nanospheres with various size scales: synthesis, formation mechanism, and enhanced photocatalytic activity. Journal of Materials Science, 2016, 51, 5445-5459.	1.7	19
72	Coreâ€Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultraâ€large Cavity for Protein Delivery. Small, 2015, 11, 5949-5955.	5.2	140

#	Article	IF	CITATIONS
73	Preparation of fluorescent mesoporous hollow silica–fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy. Nanoscale, 2015, 7, 11894-11898.	2.8	25
74	New Insight into Ordered Cage-Type Mesostructures and Their Pore Size Determination by Electron Tomography. Langmuir, 2015, 31, 2545-2553.	1.6	6
75	Self-Organized Mesostructured Hollow Carbon Nanoparticles via a Surfactant-Free Sequential Heterogeneous Nucleation Pathway. Chemistry of Materials, 2015, 27, 6297-6304.	3.2	99
76	Hierarchical SAPO-11 preparation in the presence of glucose. Materials Letters, 2015, 154, 116-119.	1.3	25
77	Synthesis of meso-SAPO-11 and its enhancement of isomerization in fluid catalytic cracking process. Applied Petrochemical Research, 2014, 4, 389-394.	1.3	2
78	Preparation of hierarchical SAPO-11 molecular sieve and its application for n-dodecane isomerization. Applied Petrochemical Research, 2014, 4, 401-407.	1.3	9
79	Synthesis of hierarchical SAPO-11 for hydroisomerization reaction in refinery processes. Applied Petrochemical Research, 2014, 4, 351-358.	1.3	15
80	Fabrication of ordered mesoporous carbon hollow fiber membranes via a confined soft templating approach. Journal of Materials Chemistry A, 2014, 2, 4144-4149.	5.2	22
81	The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide adsorption. Journal of Colloid and Interface Science, 2014, 416, 124-132.	5.0	95
82	Hierarchical Meso-Microporous SAPO-11 Synthesis from Acid Assistant Dealuminzation: Effect of Acid Strength. Applied Mechanics and Materials, 0, 313-314, 219-222.	0.2	3