Leniz F Nurullin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5450388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New evidence for dual binding site inhibitors of acetylcholinesterase as improved drugs for treatment of Alzheimer's disease. Neuropharmacology, 2019, 155, 131-141.	4.1	67
2	Schwann Cells Sense and Control Acetylcholine Spillover at the Neuromuscular Junction by α7 Nicotinic Receptors and Butyrylcholinesterase. Journal of Neuroscience, 2014, 34, 11870-11883.	3.6	51
3	Cholinergic Nociceptive Mechanisms in Rat Meninges and Trigeminal Ganglia: Potential Implications for Migraine Pain. Frontiers in Neurology, 2017, 8, 163.	2.4	33
4	β2-adrenoceptor agonist-evoked reactive oxygen species generation in mouse atria: implication in delayed inotropic effect. European Journal of Pharmacology, 2015, 765, 140-153.	3.5	26
5	NMDA receptors at the endplate of rat skeletal muscles: Precise postsynaptic localization. Muscle and Nerve, 2011, 44, 987-989.	2.2	25
6	Functional M3 cholinoreceptors are present in pacemaker and working myocardium of murine heart. Pflugers Archiv European Journal of Physiology, 2012, 463, 523-529.	2.8	23
7	Nonâ€quantal release of acetylcholine from parasympathetic nerve terminals in the right atrium of rats. Experimental Physiology, 2010, 95, 265-273.	2.0	22
8	Metabotropic <scp>GABA_B</scp> receptors mediate <scp>GABA</scp> inhibition of acetylcholine release in the rat neuromuscular junction. Journal of Neurochemistry, 2015, 135, 1149-1160.	3.9	19
9	Targeted Nanoparticles for Selective Marking of Neuromuscular Junctions and <i>ex Vivo</i> Monitoring of Endogenous Acetylcholine Hydrolysis. ACS Applied Materials & Interfaces, 2018, 10, 14948-14955.	8.0	18
10	Epidural Stimulation Combined with Triple Gene Therapy for Spinal Cord Injury Treatment. International Journal of Molecular Sciences, 2020, 21, 8896.	4.1	17
11	Preventive Triple Gene Therapy Reduces the Negative Consequences of Ischemia-Induced Brain Injury after Modelling Stroke in a Rat. International Journal of Molecular Sciences, 2020, 21, 6858.	4.1	13
12	Voltage-Dependent P/Q-Type Calcium Channels at the Frog Neuromuscular Junction. Physiological Research, 2011, 60, 815-823.	0.9	13
13	Kinetics of neurotransmitter release in neuromuscular synapses of newborn and adult rats. International Journal of Developmental Neuroscience, 2014, 34, 9-18.	1.6	12
14	Muscarinic cholinoreceptors (M1-, M2-, M3- and M4-type) modulate the acetylcholine secretion in the frog neuromuscular junction. Neuroscience Letters, 2017, 649, 62-69.	2.1	12
15	Metabotropic and ionotropic glutamate receptors mediate the modulation of acetylcholine release at the frog neuromuscular junction. Journal of Neuroscience Research, 2017, 95, 1391-1401.	2.9	10
16	Elements of molecular machinery of GABAergic signaling in the vertebrate cholinergic neuromuscular junction. Acta Histochemica, 2018, 120, 298-301.	1.8	8
17	Reorganization of Septins Modulates Synaptic Transmission at Neuromuscular Junctions. Neuroscience, 2019, 404, 91-101.	2.3	8
18	Sympathomimetics regulate quantal acetylcholine release at neuromuscular junctions through various types of adrenoreceptors. Molecular and Cellular Neurosciences, 2020, 108, 103550.	2.2	8

Leniz F Nurullin

#	Article	IF	CITATIONS
19	Mechanisms of carbacholine and GABA action on resting membrane potential and Na+/K+-ATPase of Lumbricus terrestris body wall muscles. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2011, 158, 520-524.	1.8	6
20	Immunohistochemical evidence of the presence of metabotropic receptors for Î ³ -aminobutyric acid at the rat neuromuscular junctions. Doklady Biochemistry and Biophysics, 2015, 463, 236-238.	0.9	6
21	Involvement of dihydropyridine-sensitive calcium channels in high asynchrony of transmitter release in neuromuscular synapses of newborn rats. Doklady Biological Sciences, 2016, 470, 220-223.	0.6	5
22	Quantal and non-quantal acetylcholine release at neuromuscular junctions of muscles of different types in a model of hypogravity. Doklady Biological Sciences, 2013, 448, 4-6.	0.6	4
23	Effect of cholinergic agonists on resting membrane potential of earthworm body wall muscle cells. Bulletin of Experimental Biology and Medicine, 2001, 131, 397-398.	0.8	3
24	Immunocytochemical identification of synaptotagmin 1, syntaxin 1, Ca2+ channel of the N-type, and nicotinic cholinoreceptor in motor neuromuscular junctions of somatic muscle of the earthworm Lumbricus terrestris. Cell and Tissue Biology, 2013, 7, 64-71.	0.4	3
25	Cytoskeletal Protein Septins Participate in the Modulation of the Kinetics of Acetylcholine Quanta Release at Neuromuscular Junction. BioNanoScience, 2016, 6, 249-251.	3.5	3
26	Effects of Cholinergic Receptor Agonists and Antagonists on Miniature Stimulatory Postsynaptic Ionic Currents in Somatic Muscle Cells of Lumbricus Terrestris. Bulletin of Experimental Biology and Medicine, 2005, 139, 360-362.	0.8	2
27	Effect of GABAergic and adrenergic agents on activity of Na+/K+ pump and Clâ^-cotransport in somatic muscle cells of earthworm Lumbricus Terrestris. Bulletin of Experimental Biology and Medicine, 2006, 141, 633-635.	0.8	2
28	Myelination disorders in the mechanism of hypogravity motor syndrome development. Biophysics (Russian Federation), 2012, 57, 681-683.	0.7	2
29	Immunofluorescent Identification of α1 Isoform Subunits of Voltage-Gated Ca2+-Channels of CaV1, CaV2, and CaV3 Families in Areas of Cholinergic Synapses of Somatic Muscles in Earthworm Lumbricus terrestris. Cell and Tissue Biology, 2020, 14, 316-323.	0.4	2
30	Genome-Wide Atlas of Promoter Expression Reveals Contribution of Transcribed Regulatory Elements to Genetic Control of Disuse-Mediated Atrophy of Skeletal Muscle. Biology, 2021, 10, 557.	2.8	2
31	Effects of norepinephrine and epinephrine on resting membrane potential in body wall muscle cells of Lumbricus terrestris earthworm. Bulletin of Experimental Biology and Medicine, 2001, 132, 821-823.	0.8	1
32	Effects of some transmitters on resting membrane potential of somatic cell in Lumbricus terrestris muscle wall. Bulletin of Experimental Biology and Medicine, 2003, 136, 189-191.	0.8	1
33	Two Populations of Miniature Excitatory Synaptic Ionic Currents in Somatic Muscle Cells of Lumbricus Terrestris Earthworm Body Wall. Bulletin of Experimental Biology and Medicine, 2003, 136, 503-506.	0.8	1
34	Revealing of T-type low-voltage activated calcium channels (CaV3) in frog neuromuscular junctions. Doklady Biological Sciences, 2013, 449, 73-75.	0.6	1
35	The Role of Chloride Ions in the Maintenance of Resting Membrane Potential in Rat Fast and Slow Muscles during Hypogravity Modeling. Bulletin of Experimental Biology and Medicine, 2014, 157, 577-579. 	0.8	1
36	Stable Level of Giant Sarcomeric Cytoskeletal Proteins inÂStriated Muscles of the Edible Dormouse Glis glis during Hibernation. Journal of Evolutionary Biochemistry and Physiology, 2021, 57, 886-895.	0.6	1

Leniz F Nurullin

#	Article	IF	CITATIONS
37	Calcium mechanism of norepinephrine activation of ionic pump in somatic cells of lumbricus terrestris earthworm muscle wall. Bulletin of Experimental Biology and Medicine, 2002, 134, 18-19.	0.8	0
38	Title is missing!. Neurophysiology, 2002, 34, 255-257.	0.3	0
39	Effect of ionic medium on carbacholine-induced membrane depolarization in lumbricus terrestris somatic muscle cells. Bulletin of Experimental Biology and Medicine, 2002, 134, 428-429.	0.8	Ο
40	The role of chlorine ion cotransport in the regulation of rest potential and osmotic homeostasis in eartearthworm somatic muscle cells. Doklady Biological Sciences, 2006, 406, 1-3.	0.6	0
41	Functional heterogeneity of the "transporter―of electrogenic ionic pump of the Lumbricus terrestris somatic myocyte membrane. Bulletin of Experimental Biology and Medicine, 2006, 142, 720-722.	0.8	Ο
42	Endo- and exocytosis of vesicles in the intramural nerve fibers of the rat right atrium. Doklady Biological Sciences, 2009, 428, 423-426.	0.6	0
43	Characteristics of the Transmission of Excitation in Rat Neuromuscular Synapses at Different Periods of Postnatal Development. Neuroscience and Behavioral Physiology, 2014, 44, 960-966.	0.4	Ο
44	The effect of modelling of hypogravity on postsynaptic acetylcholine receptors and activity of acetylcholinesterase in neuromuscular synapses of fast and slow muscles of rat. Cell and Tissue Biology, 2014, 8, 499-503.	0.4	0
45	Studies of the expression of subunits $\hat{1}\pm 2$ and $\hat{1}^2 1$ of Na+/K+-ATPase, $\hat{1}\pm 1S$ (L-type) Ca2+-channel, and SERCA 1/2/3 of Ca2+-ATPase of phasic and postural rat muscles in a model of hypogravity using the method of fluorescent microscopy. Cell and Tissue Biology, 2016, 10, 402-409.	0.4	Ο
46	Semaphorins Are Likely to Be Involved in the Control of Hibernation. BioNanoScience, 2017, 7, 73-74.	3.5	0
47	Adrenoceptors at the Frog Neuromuscular Junction: an Immunohistochemical Study. BioNanoScience, 2017, 7, 123-126.	3.5	0
48	Ca2+-Permeable Canonical TRP Channels in Mouse m. LAL Muscle Fibers. Cell and Tissue Biology, 2021, 15, 189-198.	0.4	0