
Sven Hammerschmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5450209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Procoagulant Activity of Blood and Microvesicles Is Disturbed by Pneumococcal Pneumolysin, Which Interacts with Coagulation Factors. Journal of Innate Immunity, 2023, 15, 136-152.	3.8	1
2	Hydrogen Peroxide Is Crucial for NLRP3 Inflammasome-Mediated IL-1β Production and Cell Death in Pneumococcal Infections of Bronchial Epithelial Cells. Journal of Innate Immunity, 2022, 14, 192-206.	3.8	22
3	The global proteome and ubiquitinome of bacterial and viral co-infected bronchial epithelial cells. Journal of Proteomics, 2022, 250, 104387.	2.4	1
4	A semisynthetic glycoconjugate provides expanded cross-serotype protection against Streptococcus pneumoniae. Vaccine, 2022, 40, 1038-1046.	3.8	2
5	Molecular Epidemiology of Multidrug-Resistant Pneumococci among Ghanaian Children under Five Years Post PCV13 Using MLST. Microorganisms, 2022, 10, 469.	3.6	3
6	Streptococcus pneumoniae and Influenza A Virus Co-Infection Induces Altered Polyubiquitination in A549 Cells. Frontiers in Cellular and Infection Microbiology, 2022, 12, 817532.	3.9	2
7	Platelets, Bacterial Adhesins and the Pneumococcus. Cells, 2022, 11, 1121.	4.1	9
8	Streptococcus pneumoniae Affects Endothelial Cell Migration in Microfluidic Circulation. Frontiers in Microbiology, 2022, 13, 852036.	3.5	1
9	αâ€hemolysin of Staphylococcus aureus impairs thrombus formation. Journal of Thrombosis and Haemostasis, 2022, 20, 1464-1475.	3.8	5
10	<i>Streptococcus pneumoniae</i> Impairs Maturation of Human Dendritic Cells and Consequent Activation of CD4 ⁺ T Cells via Pneumolysin. Journal of Innate Immunity, 2022, 14, 569-580.	3.8	4
11	Group B Streptococcal Hemolytic Pigment Impairs Platelet Function in a Two-Step Process. Cells, 2022, 11, 1637.	4.1	1
12	Bioactive lipid screening during respiratory tract infections with bacterial and viral pathogens in mice. Metabolomics, 2022, 18, .	3.0	2
13	Crystal Structure and Pathophysiological Role of the Pneumococcal Nucleoside-binding Protein PnrA. Journal of Molecular Biology, 2021, 433, 166723.	4.2	2
14	Molecular analyses identifies new domains and structural differences among Streptococcus pneumoniae immune evasion proteins PspC and Hic. Scientific Reports, 2021, 11, 1701.	3.3	3
15	The Two-Component System 09 Regulates Pneumococcal Carbohydrate Metabolism and Capsule Expression. Microorganisms, 2021, 9, 468.	3.6	7
16	Sputum Proteome Signatures of Mechanically Ventilated Intensive Care Unit Patients Distinguish Samples with or without Anti-pneumococcal Activity. MSystems, 2021, 6, .	3.8	4
17	The Two-Component System 09 of Streptococcus pneumoniae Is Important for Metabolic Fitness and Resistance during Dissemination in the Host. Microorganisms, 2021, 9, 1365.	3.6	3
18	Factors Associated with Streptococcus pneumoniae Nasopharyngeal Carriage and Antimicrobial Susceptibility among Children Under the Age of 5 Years in the Southwestern Colombia. Journal of Pediatric Infectious Diseases, 2021, 16, 205-215.	0.2	2

#	Article	IF	CITATIONS
19	The prevalence of pilus islets in Streptococcus pneumoniae isolates from healthy children in Indonesia. Access Microbiology, 2021, 3, acmi000184.	0.5	3
20	Innate immune responses at the asymptomatic stage of influenza A viral infections of Streptococcus pneumoniae colonized and non-colonized mice. Scientific Reports, 2021, 11, 20609.	3.3	11
21	Bronchial Epithelial Cells Accumulate Citrate Intracellularly in Response to Pneumococcal Hydrogen Peroxide. ACS Infectious Diseases, 2021, 7, 2971-2978.	3.8	3
22	Pneumococcal Extracellular Serine Proteases: Molecular Analysis and Impact on Colonization and Disease. Frontiers in Cellular and Infection Microbiology, 2021, 11, 763152.	3.9	4
23	Diminished Pneumococcal-Specific CD4+ T-Cell Response is Associated With Increased Regulatory T Cells at Older Age. Frontiers in Aging, 2021, 2, .	2.6	2
24	Polyvalent Immunoglobulin Preparations Inhibit Pneumolysin-Induced Platelet Destruction. Thrombosis and Haemostasis, 2021, , .	3.4	4
25	The Role of NLRP3 Inflammasome in Pneumococcal Infections. Frontiers in Immunology, 2020, 11, 614801.	4.8	18
26	Relationships among streptococci from the mitis group, misidentified as Streptococcus pneumoniae. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 1865-1878.	2.9	7
27	Post-Vaccination Streptococcus pneumoniae Carriage and Virulence Gene Distribution among Children Less Than Five Years of Age, Cape Coast, Ghana. Microorganisms, 2020, 8, 1987.	3.6	7
28	Pneumolysin induces platelet destruction, not platelet activation, which can be prevented by immunoglobulin preparations in vitro. Blood Advances, 2020, 4, 6315-6326.	5.2	22
29	A Giant Extracellular Matrix Binding Protein of <i>Staphylococcus epidermidis</i> Binds Surface-Immobilized Fibronectin via a Novel Mechanism. MBio, 2020, 11, .	4.1	9
30	Proteomic Adaptation of Streptococcus pneumoniae to the Antimicrobial Peptide Human Beta Defensin 3 (hBD3) in Comparison to Other Cell Surface Stresses. Microorganisms, 2020, 8, 1697.	3.6	2
31	Adenosine Triphosphate Neutralizes Pneumolysin-Induced Neutrophil Activation. Journal of Infectious Diseases, 2020, 222, 1702-1712.	4.0	8
32	Lipidation of Pneumococcal Antigens Leads to Improved Immunogenicity and Protection. Vaccines, 2020, 8, 310.	4.4	6
33	HIF-1α is involved in blood–brain barrier dysfunction and paracellular migration of bacteria in pneumococcal meningitis. Acta Neuropathologica, 2020, 140, 183-208.	7.7	24
34	Comprehensive Spectral Library from the Pathogenic Bacterium <i>Streptococcus pneumoniae</i> with Focus on Phosphoproteins. Journal of Proteome Research, 2020, 19, 1435-1446.	3.7	4
35	16HBE Cell Lipid Mediator Responses to Mono and Co-Infections with Respiratory Pathogens. Metabolites, 2020, 10, 113.	2.9	8
36	Proteomic Adaptation of Streptococcus pneumoniae to the Human Antimicrobial Peptide LL-37. Microorganisms, 2020, 8, 413.	3.6	11

#	Article	IF	CITATIONS
37	Activated platelets kill Staphylococcus aureus, but not Streptococcus pneumoniae—The role of FcγRIIa and platelet factor 4/heparinantibodies. Journal of Thrombosis and Haemostasis, 2020, 18, 1459-1468.	3.8	13
38	Extracellular Pneumococcal Serine Proteases Affect Nasopharyngeal Colonization. Frontiers in Cellular and Infection Microbiology, 2020, 10, 613467.	3.9	7
39	Streptococcus pneumoniae inhibits purinergic signaling and promotes purinergic receptor P2Y2 internalization in alveolar epithelial cells. Journal of Biological Chemistry, 2019, 294, 12795-12806.	3.4	8
40	In vivo proteomics identifies the competence regulon and AliB oligopeptide transporter as pathogenic factors in pneumococcal meningitis. PLoS Pathogens, 2019, 15, e1007987.	4.7	25
41	Extracellular Matrix Interactions with Gram-Positive Pathogens. Microbiology Spectrum, 2019, 7, .	3.0	32
42	Von Willebrand Factor Mediates Pneumococcal Aggregation and Adhesion in Blood Flow. Frontiers in Microbiology, 2019, 10, 511.	3.5	10
43	Contribution of Human Thrombospondin-1 to the Pathogenesis of Gram-Positive Bacteria. Journal of Innate Immunity, 2019, 11, 303-315.	3.8	12
44	Homophilic protein interactions facilitate bacterial aggregation and IgG-dependent complex formation by the Streptococcus canis M protein SCM. Virulence, 2019, 10, 194-206.	4.4	2
45	Electron Microscopy to Study the Fine Structure of the Pneumococcal Cell. Methods in Molecular Biology, 2019, 1968, 13-33.	0.9	7
46	Extracellular Matrix Interactions with Gram-Positive Pathogens. , 2019, , 108-124.		5
47	Heterogeneous antimicrobial activity in broncho-alveolar aspirates from mechanically ventilated intensive care unit patients. Virulence, 2019, 10, 879-891.	4.4	4
48	Fibronectin modulates formation of PF4/heparin complexes and is a potential factor for reducing risk of developing HIT. Blood, 2019, 133, 978-989.	1.4	14
49	The Pneumococcal Surface Proteins PspA and PspC Sequester Host C4-Binding Protein To Inactivate Complement C4b on the Bacterial Surface. Infection and Immunity, 2019, 87, .	2.2	26
50	Proteomic Investigation Uncovers Potential Targets and Target Sites of Pneumococcal Serine-Threonine Kinase StkP and Phosphatase PhpP. Frontiers in Microbiology, 2019, 10, 3101.	3.5	28
51	Interaction between the Staphylococcus aureus extracellular adherence protein Eap and its subdomains with platelets. International Journal of Medical Microbiology, 2018, 308, 683-691.	3.6	9
52	Metabolic inventory of Streptococcus pneumoniae growing in a chemical defined environment. International Journal of Medical Microbiology, 2018, 308, 705-712.	3.6	13
53	Proteomic response of Streptococcus pneumoniae to iron limitation. International Journal of Medical Microbiology, 2018, 308, 713-721.	3.6	26
54	Platelets kill bacteria by bridging innate and adaptive immunity via platelet factor 4 and FcγRIIA. Journal of Thrombosis and Haemostasis, 2018, 16, 1187-1197.	3.8	64

#	Article	IF	CITATIONS
55	Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce Platelet Aggregation. Thrombosis and Haemostasis, 2018, 47, 745-757.	3.4	27
56	Streptococcus pneumoniae From Patients With Hemolytic Uremic Syndrome Binds Human Plasminogen via the Surface Protein PspC and Uses Plasmin to Damage Human Endothelial Cells. Journal of Infectious Diseases, 2018, 217, 358-370.	4.0	36
57	Streptococcus pneumoniae two-component regulatory systems: The interplay of the pneumococcus with its environment. International Journal of Medical Microbiology, 2018, 308, 722-737.	3.6	69
58	Bactericidal/Permeability-Increasing Protein Is an Enhancer of Bacterial Lipoprotein Recognition. Frontiers in Immunology, 2018, 9, 2768.	4.8	28
59	Intranasal Vaccination With Lipoproteins Confers Protection Against Pneumococcal Colonisation. Frontiers in Immunology, 2018, 9, 2405.	4.8	33
60	Attachment of phosphorylcholine residues to pneumococcal teichoic acids and modification of substitution patterns by the phosphorylcholine esterase. Journal of Biological Chemistry, 2018, 293, 10620-10629.	3.4	17
61	Pneumococcal Metabolic Adaptation and Colonization Are Regulated by the Two-Component Regulatory System 08. MSphere, 2018, 3, .	2.9	13
62	The variome of pneumococcal virulence factors and regulators. BMC Genomics, 2018, 19, 10.	2.8	32
63	Mast Cells Are Activated by Streptococcus pneumoniae In Vitro but Dispensable for the Host Defense Against Pneumococcal Central Nervous System Infection In Vivo. Frontiers in Immunology, 2018, 9, 550.	4.8	9
64	Aerobic bacteria associated with chronic suppurative otitis media in Angola. Infectious Diseases of Poverty, 2018, 7, 42.	3.7	24
65	Serotype 3 pneumococci sequester platelet-derived human thrombospondin-1 via the adhesin and immune evasion protein Hic. Journal of Biological Chemistry, 2017, 292, 5770-5783.	3.4	12
66	Role of purinergic signaling in experimental pneumococcal meningitis. Scientific Reports, 2017, 7, 44625.	3.3	12
67	IL-37 Causes Excessive Inflammation and Tissue Damage in Murine Pneumococcal Pneumonia. Journal of Innate Immunity, 2017, 9, 403-418.	3.8	21
68	A global Staphylococcus aureus proteome resource applied to the in vivo characterization of host-pathogen interactions. Scientific Reports, 2017, 7, 9718.	3.3	42
69	Lipoteichoic acid deficiency permits normal growth but impairs virulence of Streptococcus pneumoniae. Nature Communications, 2017, 8, 2093.	12.8	52
70	Mapping the recognition domains of pneumococcal fibronectinâ€binding proteins PavA and PavB demonstrates a common pattern of molecular interactions with fibronectin type III repeats. Molecular Microbiology, 2017, 105, 839-859.	2.5	16
71	Vitronectin Binds to a Specific Stretch within the Head Region of <i>Yersinia</i> Adhesin A and Thereby Modulates <i>Yersinia enterocolitica</i> Host Interaction. Journal of Innate Immunity, 2017, 9, 33-51.	3.8	16
72	CRAMP deficiency leads to a pro-inflammatory phenotype and impaired phagocytosis after exposure to bacterial meningitis pathogens. Cell Communication and Signaling, 2017, 15, 32.	6.5	13

Sven Hammerschmidt

#	Article	IF	CITATIONS
73	SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G. Frontiers in Cellular and Infection Microbiology, 2017, 7, 80.	3.9	31
74	Port d'Entrée for Respiratory Infections – Does the Influenza A Virus Pave the Way for Bacteria?. Frontiers in Microbiology, 2017, 8, 2602.	3.5	33
75	Induction of Central Host Signaling Kinases during Pneumococcal Infection of Human THP-1 Cells. Frontiers in Cellular and Infection Microbiology, 2016, 6, 48.	3.9	7
76	Thioredoxins and Methionine Sulfoxide Reductases in the Pathophysiology of Pneumococcal Meningitis. Journal of Infectious Diseases, 2016, 214, 953-961.	4.0	11
77	Host-derived extracellular RNA promotes adhesion of Streptococcus pneumoniae to endothelial and epithelial cells. Scientific Reports, 2016, 6, 37758.	3.3	27
78	Modular Architecture and Unique Teichoic Acid Recognition Features of Choline-Binding Protein L (CbpL) Contributing to Pneumococcal Pathogenesis. Scientific Reports, 2016, 6, 38094.	3.3	32
79	Comparison of pulsed corona plasma and pulsed electric fields for the decontamination of water containing Legionella pneumophila as model organism. Bioelectrochemistry, 2016, 112, 83-90.	4.6	22
80	Pneumococcal lipoproteins involved in bacterial fitness, virulence, and immune evasion. FEBS Letters, 2016, 590, 3820-3839.	2.8	51
81	PROGRESS – prospective observational study on hospitalized community acquired pneumonia. BMC Pulmonary Medicine, 2016, 16, 108.	2.0	15
82	Special Issue on â€~Microbe–host interactions'. FEBS Letters, 2016, 590, 3703-3704.	2.8	2
83	IL-10 mediates plasmacytosis-associated immunodeficiency by inhibiting complement-mediated neutrophil migration. Journal of Allergy and Clinical Immunology, 2016, 137, 1487-1497.e6.	2.9	57
84	Conserved Patterns of Microbial Immune Escape: Pathogenic Microbes of Diverse Origin Target the Human Terminal Complement Inhibitor Vitronectin via a Single Common Motif. PLoS ONE, 2016, 11, e0147709.	2.5	31
85	Polyphosphates form antigenic complexes with platelet factor 4 (PF4) and enhance PF4-binding to bacteria. Thrombosis and Haemostasis, 2015, 114, 1189-1198.	3.4	42
86	Binding of vitronectin and Factor H to Hic contributes to immune evasion of Streptococcus pneumoniae serotype 3. Thrombosis and Haemostasis, 2015, 113, 125-142.	3.4	23
87	Pneumococcal Hydrogen Peroxide–Induced Stress Signaling Regulates Inflammatory Genes. Journal of Infectious Diseases, 2015, 211, 306-316.	4.0	31
88	Pneumococcal Pili and Adhesins. , 2015, , 309-346.		2
89	Exploitation of Host Signal Transduction Pathways Induced by Streptococcus pneumoniae. , 2015, , 347-362.		0
90	Pneumococcal Adhesins PavB and PspC Are Important for the Interplay with Human Thrombospondin-1. Journal of Biological Chemistry, 2015, 290, 14542-14555.	3.4	31

#	Article	IF	CITATIONS
91	<i>Streptococcus pneumoniae–</i> Induced Oxidative Stress in Lung Epithelial Cells Depends on Pneumococcal Autolysis and Is Reversible by Resveratrol. Journal of Infectious Diseases, 2015, 211, 1822-1830.	4.0	52
92	Pulmonary Immunostimulation with MALP-2 in Influenza Virus-Infected Mice Increases Survival after Pneumococcal Superinfection. Infection and Immunity, 2015, 83, 4617-4629.	2.2	27
93	Leukocyte Attraction by CCL20 and Its Receptor CCR6 in Humans and Mice with Pneumococcal Meningitis. PLoS ONE, 2014, 9, e93057.	2.5	26
94	Tuf of Streptococcus pneumoniae is a surface displayed human complement regulator binding protein. Molecular Immunology, 2014, 62, 249-264.	2.2	65
95	Regulation of the Arginine Deiminase System by ArgR2 Interferes with Arginine Metabolism and Fitness of Streptococcus pneumoniae. MBio, 2014, 5, .	4.1	54
96	Structure of the pneumococcal <scp>l</scp> , <scp>d</scp> â€carboxypeptidase <scp>DacB</scp> and pathophysiological effects of disabled cell wall hydrolases <scp>DacA</scp> and <scp>DacB</scp> . Molecular Microbiology, 2014, 93, 1183-1206.	2.5	37
97	Following in Real Time the Impact of Pneumococcal Virulence Factors in an Acute Mouse Pneumonia Model Using Bioluminescent Bacteria. Journal of Visualized Experiments, 2014, , e51174.	0.3	12
98	Endocytosis of Streptococcus pneumoniae via the polymeric immunoglobulin receptor of epithelial cells relies on clathrin and caveolin dependent mechanisms. International Journal of Medical Microbiology, 2014, 304, 1233-1246.	3.6	21
99	Repeating Structures of the Major Staphylococcal Autolysin Are Essential for the Interaction with Human Thrombospondin 1 and Vitronectin. Journal of Biological Chemistry, 2014, 289, 4070-4082.	3.4	25
100	Influence of Impaired Lipoprotein Biogenesis on Surface and Exoproteome of <i>Streptococcus pneumoniae</i> . Journal of Proteome Research, 2014, 13, 650-667.	3.7	45
101	Structural Reevaluation of Streptococcus pneumoniae Lipoteichoic Acid and New Insights into Its Immunostimulatory Potency. Journal of Biological Chemistry, 2013, 288, 15654-15667.	3.4	87
102	Exploitation of physiology and metabolomics to identify pneumococcal vaccine candidates. Expert Review of Vaccines, 2013, 12, 1061-1075.	4.4	21
103	Molecular architecture of <i>Streptococcus pneumoniae</i> surface thioredoxinâ€fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence. EMBO Molecular Medicine, 2013, 5, 1852-1870.	6.9	99
104	The interaction between bacterial enolase and plasminogen promotes adherence of Streptococcus pneumoniae to epithelial and endothelial cells. International Journal of Medical Microbiology, 2013, 303, 452-462.	3.6	88
105	TLR9- and Src-dependent expression of Krueppel-like factor 4 controls interleukin-10 expression in pneumonia. European Respiratory Journal, 2013, 41, 384-391.	6.7	35
106	High mobility group box 1 prolongs inflammation and worsens disease in pneumococcal meningitis. Brain, 2013, 136, 1746-1759.	7.6	34
107	The Choline-binding Protein PspC of Streptococcus pneumoniae Interacts with the C-terminal Heparin-binding Domain of Vitronectin. Journal of Biological Chemistry, 2013, 288, 15614-15627.	3.4	66
108	Lung dendritic cells facilitate extrapulmonary bacterial dissemination during pneumococcal pneumonia. Frontiers in Cellular and Infection Microbiology, 2013, 3, 21.	3.9	24

#	Article	IF	CITATIONS
109	<i>Streptococcus pneumoniae</i> Stimulates a STING- and IFN Regulatory Factor 3-Dependent Type I IFN Production in Macrophages, which Regulates RANTES Production in Macrophages, Cocultured Alveolar Epithelial Cells, and Mouse Lungs. Journal of Immunology, 2012, 188, 811-817.	0.8	106
110	Characterization of Central Carbon Metabolism of Streptococcus pneumoniae by Isotopologue Profiling. Journal of Biological Chemistry, 2012, 287, 4260-4274.	3.4	75
111	Tumor Necrosis Factor Alpha Modulates the Dynamics of the Plasminogen-Mediated Early Interaction between Bifidobacterium animalis subsp. <i>lactis</i> and Human Enterocytes. Applied and Environmental Microbiology, 2012, 78, 2465-2469.	3.1	5
112	Platelet factor 4 binding to lipid A of Gram-negative bacteria exposes PF4/heparin-like epitopes. Blood, 2012, 120, 3345-3352.	1.4	99
113	Enolase of <i>Streptococcus pneumoniae</i> Binds Human Complement Inhibitor C4b-Binding Protein and Contributes to Complement Evasion. Journal of Immunology, 2012, 189, 3575-3584.	0.8	88
114	Microbial pathogens of diverse origin inhibit the terminal complement pathway: A common immune evasion strategy?. Immunobiology, 2012, 217, 1188.	1.9	0
115	Streptococcus pneumoniae induces exocytosis of Weibel-Palade bodies in pulmonary endothelial cells. Cellular Microbiology, 2012, 14, 210-225.	2.1	29
116	Impact of pneumococcal microbial surface components recognizing adhesive matrix molecules on colonization. Molecular Oral Microbiology, 2012, 27, 246-256.	2.7	62
117	Heterologous expression of pneumococcal virulence factor PspC on the surface of Lactococcus lactis confers adhesive properties. Microbiology (United Kingdom), 2012, 158, 771-780.	1.8	13
118	Combat Pneumococcal Infections: Adhesins as Candidates for Protein- Based Vaccine Development. Current Drug Targets, 2012, 13, 323-337.	2.1	69
119	Genomic organization, structure, regulation and pathogenic role of pilus constituents in major pathogenic Streptococci and Enterococci. International Journal of Medical Microbiology, 2011, 301, 240-251.	3.6	64
120	Streptococcus Pneumoniae Inhibits Adenosine-Triphosphate (ATP)-Mediated Calcium Release In Alveolar Epithelial Cells. , 2011, , .		0
121	Platelet factor 4 binds to bacteria, inducing antibodies cross-reacting with the major antigen in heparin-induced thrombocytopenia. Blood, 2011, 117, 1370-1378.	1.4	207
122	Association of natural anti-platelet factor 4/heparin antibodies with periodontal disease. Blood, 2011, 118, 1395-1401.	1.4	93
123	Pneumococcal Adherence And Virulence Factor A (PAVA) Induces Endothelial CA2+-Signaling In Pulmonary Capillary Venules. , 2011, , .		0
124	Alpha-enolase of Streptococcus pneumoniae binds the human complement inhibitor C4-binding protein and mediates pneumococcal complement evasion. Molecular Immunology, 2011, 48, 1698.	2.2	0
125	Mast Cells Increase Vascular Permeability by Heparin-Initiated Bradykinin Formation InÂVivo. Immunity, 2011, 34, 258-268.	14.3	230
126	Streptococcus pneumoniae Infection of Host Epithelial Cells via Polymeric Immunoglobulin Receptor Transiently Induces Calcium Release from Intracellular Stores. Journal of Biological Chemistry, 2011, 286, 17861-17869.	3.4	21

#	Article	IF	CITATIONS
127	Impact of Glutamine Transporters on Pneumococcal Fitness under Infection-Related Conditions. Infection and Immunity, 2011, 79, 44-58.	2.2	52
128	Relevance of Bifidobacterium animalis subsp. lactis Plasminogen Binding Activity in the Human Gastrointestinal Microenvironment. Applied and Environmental Microbiology, 2011, 77, 7072-7076.	3.1	5
129	The NLRP3 Inflammasome Contributes to Brain Injury in Pneumococcal Meningitis and Is Activated through ATP-Dependent Lysosomal Cathepsin B Release. Journal of Immunology, 2011, 187, 5440-5451.	0.8	192
130	Fibronectin stimulates <i>Escherichia coli</i> phagocytosis by microglial cells. Glia, 2010, 58, 367-376.	4.9	18
131	PavB is a surfaceâ€exposed adhesin of <i>Streptococcus pneumoniae</i> contributing to nasopharyngeal colonization and airways infections. Molecular Microbiology, 2010, 77, 22-43.	2.5	113
132	Polymeric Immunoglobulin Receptor-mediated Invasion of Streptococcus pneumoniae into Host Cells Requires a Coordinate Signaling of SRC Family of Protein-tyrosine Kinases, ERK, and c-Jun N-terminal Kinase. Journal of Biological Chemistry, 2010, 285, 35615-35623.	3.4	19
133	TLR2- and Nucleotide-Binding Oligomerization Domain 2-Dependent Krüppel-Like Factor 2 Expression Downregulates NF-lºB–Related Gene Expression. Journal of Immunology, 2010, 185, 597-604.	0.8	24
134	Complement Regulator Factor H Mediates a Two-step Uptake of Streptococcus pneumoniae by Human Cells. Journal of Biological Chemistry, 2010, 285, 23486-23495.	3.4	75
135	Toll-Like Receptor Stimulation Enhances Phagocytosis and Intracellular Killing of Nonencapsulated and Encapsulated <i>Streptococcus pneumoniae</i> by Murine Microglia. Infection and Immunity, 2010, 78, 865-871.	2.2	128
136	DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts. Microbiology (United Kingdom), 2010, 156, 1609-1618.	1.8	102
137	Pneumococcal protein PavA is important for nasopharyngeal carriage and development of sepsis. Molecular Oral Microbiology, 2010, 25, 50-60.	2.7	28
138	Pneumococcal association to platelets is mediated by soluble fibrin and supported by thrombospondin-1. Thrombosis and Haemostasis, 2009, 102, 735-742.	3.4	24
139	Toll-Like Receptor Prestimulation Increases Phagocytosis of <i>Escherichia coli</i> DH5α and <i>Escherichia coli</i> K1 Strains by Murine Microglial Cells. Infection and Immunity, 2009, 77, 557-564.	2.2	70
140	Integrin-linked kinase is required for vitronectin-mediated internalization of <i>Streptococcus pneumoniae</i> by host cells. Journal of Cell Science, 2009, 122, 256-267.	2.0	124
141	Cdc42 and the Phosphatidylinositol 3-Kinase-Akt Pathway Are Essential for PspC-mediated Internalization of Pneumococci by Respiratory Epithelial Cells. Journal of Biological Chemistry, 2009, 284, 19427-19436.	3.4	47
142	Pneumococcal Interaction with Human Dendritic Cells: Phagocytosis, Survival, and Induced Adaptive Immune Response Are Manipulated by PavA. Journal of Immunology, 2009, 183, 1952-1963.	0.8	51
143	Defining the Structural Basis of Human Plasminogen Binding by Streptococcal Surface Enolase. Journal of Biological Chemistry, 2009, 284, 17129-17137.	3.4	61
144	Surface-associated lipoprotein PpmA of Streptococcus pneumoniae is involved in colonization in a strain-specific manner. Microbiology (United Kingdom), 2009, 155, 2401-2410.	1.8	58

SVEN HAMMERSCHMIDT

#	Article	IF	CITATIONS
145	Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host. Microbiology (United Kingdom), 2009, 155, 3294-3303.	1.8	110
146	Surface-Exposed Adherence Molecules of Streptococcus pneumoniae. Methods in Molecular Biology, 2009, 470, 29-45.	0.9	8
147	The surface-associated elongation factor Tu is concealed for antibody binding on viable pneumococci and meningococci. FEMS Immunology and Medical Microbiology, 2008, 53, 222-230.	2.7	16
148	The complement fitness Factor H: Role in human diseases and for immune escape of pathogens, like pneumococci. Vaccine, 2008, 26, 167-174.	3.8	59
149	Plasminogen-dependent proteolytic activity in Bifidobacterium lactis. Microbiology (United Kingdom), 2008, 154, 2457-2462.	1.8	12
150	Fibrinolysis and Host Response in Bacterial Infections. , 2008, , 71-88.		0
151	The Host Immune Regulator Factor H Interacts via Two Contact Sites with the PspC Protein of <i>Streptococcus pneumoniae</i> and Mediates Adhesion to Host Epithelial Cells. Journal of Immunology, 2007, 178, 5848-5858.	0.8	118
152	Thrombospondinâ€1 promotes cellular adherence of Gramâ€positive pathogens via recognition of peptidoglycan. FASEB Journal, 2007, 21, 3118-3132.	0.5	84
153	Binding of Human Plasminogen to <i>Bifidobacterium</i> . Journal of Bacteriology, 2007, 189, 5929-5936.	2.2	109
154	Cytosolic Proteins Contribute to Surface Plasminogen Recruitment of Neisseria meningitidis. Journal of Bacteriology, 2007, 189, 3246-3255.	2.2	100
155	Cell-specific Interleukin-15 and Interleukin-15 receptor subunit expression and regulation in pneumococcal pneumonia—Comparison to chlamydial lung infection. Cytokine, 2007, 38, 61-73.	3.2	15
156	Fibrinolysis and host response in bacterial infections. Thrombosis and Haemostasis, 2007, 98, 512-520.	3.4	150
157	Pathogenesis of Streptococcus pneumoniae infections:adaptive immunity, innate immunity, cell biology, virulence factors. , 2007, , 139-181.		4
158	Fibrinolysis and host response in bacterial infections. Thrombosis and Haemostasis, 2007, 98, 512-20.	3.4	69
159	Versatility of pneumococcal surface proteins. Microbiology (United Kingdom), 2006, 152, 295-303.	1.8	189
160	Adherence molecules of pathogenic pneumococci. Current Opinion in Microbiology, 2006, 9, 12-20.	5.1	128
161	Pneumococci induced TLR- and Rac1-dependent NF-κB-recruitment to the IL-8 promoter in lung epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L730-L737.	2.9	76
162	Identification of a Polymeric Ig Receptor Binding Phage-displayed Peptide That Exploits Epithelial Transcytosis without Dimeric IgA Competition. Journal of Biological Chemistry, 2006, 281, 7075-7081.	3.4	14

#	Article	IF	CITATIONS
163	Streptococcus pneumoniae enolase is important for plasminogen binding despite low abundance of enolase protein on the bacterial cell surface. Microbiology (United Kingdom), 2006, 152, 1307-1317.	1.8	79
164	The Streptococcal Lipoprotein Rotamase A (SlrA) Is a Functional Peptidyl-prolyl Isomerase Involved in Pneumococcal Colonization. Journal of Biological Chemistry, 2006, 281, 968-976.	3.4	116
165	Regulation of Production of Mucosal Antibody to Pneumococcal Protein Antigens by T-Cell-Derived Gamma Interferon and Interleukin-10 in Children. Infection and Immunity, 2006, 74, 4735-4743.	2.2	41
166	The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Thrombosis and Haemostasis, 2005, 94, 304-11.	3.4	117
167	PavA of <i>Streptococcus pneumoniae</i> Modulates Adherence, Invasion, and Meningeal Inflammation. Infection and Immunity, 2005, 73, 2680-2689.	2.2	158
168	Illustration of Pneumococcal Polysaccharide Capsule during Adherence and Invasion of Epithelial Cells. Infection and Immunity, 2005, 73, 4653-4667.	2.2	377
169	Cloning, characterization and DNA immunization of an Onchocerca volvulus glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1741, 85-94.	3.8	36
170	Streptococcus pneumoniae R6x induced p38 MAPK and JNK-mediated Caspase-dependent apoptosis in human endothelial cells. Thrombosis and Haemostasis, 2005, 94, 295-303.	3.4	51
171	Streptococcus pneumoniae- Induced Caspase 6-Dependent Apoptosis in Lung Epithelium. Infection and Immunity, 2004, 72, 4940-4947.	2.2	74
172	Glyceraldehyde-3-Phosphate Dehydrogenase of <i>Streptococcus pneumoniae</i> Is a Surface-Displayed Plasminogen-Binding Protein. Infection and Immunity, 2004, 72, 2416-2419.	2.2	223
173	Streptococcus pneumoniae-induced p38 MAPK-dependent Phosphorylation of RelA at the Interleukin-8 Promotor. Journal of Biological Chemistry, 2004, 279, 53241-53247.	3.4	109
174	Dual Roles of PspC, a Surface Protein of <i>Streptococcus pneumoniae</i> , in Binding Human Secretory IgA and Factor H. Journal of Immunology, 2004, 173, 471-477.	0.8	111
175	Nucleotide-binding Oligomerization Domain Proteins Are Innate Immune Receptors for Internalized Streptococcus pneumoniae. Journal of Biological Chemistry, 2004, 279, 36426-36432.	3.4	286
176	Ectodomains 3 and 4 of Human Polymeric Immunoglobulin Receptor (hpIgR) Mediate Invasion of Streptococcus pneumoniae into the Epithelium. Journal of Biological Chemistry, 2004, 279, 6296-6304.	3.4	100
177	The cell wall subproteome ofListeria monocytogenes. Proteomics, 2004, 4, 2991-3006.	2.2	182
178	Plasmin(ogen)-binding α-Enolase from Streptococcus pneumoniae: Crystal Structure and Evaluation of Plasmin(ogen)-binding Sites. Journal of Molecular Biology, 2004, 343, 997-1005.	4.2	147
179	Binding of α2-macroglobulin to GRAB (Protein G-related α2-macroglobulin-binding protein), an important virulence factor of group A streptococci, is mediated by two charged motifs in the ΔA region. Biochemical Journal, 2004, 381, 877-885.	3.7	15
180	Characterization of plasmin(ogen) binding to Streptococcus pneumoniae. Indian Journal of Medical Research, 2004, 119 Suppl, 29-32.	1.0	9

Sven Hammerschmidt

#	Article	IF	CITATIONS
181	Characterization of the interaction of the pneumococcal surface protein SpsA with the human polymeric immunoglobulin receptor (hpIgR). Indian Journal of Medical Research, 2004, 119 Suppl, 61-5.	1.0	12
182	Molecular cloning of an α-enolase from the human filarial parasite Onchocerca volvulus that binds human plasminogen. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2003, 1627, 111-120.	2.4	102
183	Identification of a novel plasmin(ogen)-binding motif in surface displayed α-enolase of Streptococcus pneumoniae. Molecular Microbiology, 2003, 49, 411-423.	2.5	219
184	Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Molecular Microbiology, 2002, 36, 726-736.	2.5	129
185	alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Molecular Microbiology, 2001, 40, 1273-1287.	2.5	425
186	The <i>pavA</i> gene of <i>Streptococcus pneumoniae</i> encodes a fibronectinâ€binding protein that is essential for virulence. Molecular Microbiology, 2001, 41, 1395-1408.	2.5	199
187	Identification of Pneumococcal Surface Protein A as a Lactoferrin-Binding Protein of <i>Streptococcus pneumoniae</i> . Infection and Immunity, 1999, 67, 1683-1687.	2.2	156
188	Identification of Pneumococcal Surface Protein A as a Lactoferrin-Binding Protein of Streptococcus pneumoniae. Infection and Immunity, 1999, 67, 1683-1687.	2.2	22
189	Response from Chhatwal and Hammerschmidt. Trends in Microbiology, 1998, 6, 87-88.	7.7	3
190	Induction of human endothelial tissue factor expression byNeisseria meningitidis: the influence of bacterial killing and adherence to the endothelium. Microbial Pathogenesis, 1997, 22, 265-274.	2.9	41
191	SpsA, a novel pneumococcal surface protein with specific binding to secretory Immunoglobulin A and secretory component. Molecular Microbiology, 1997, 25, 1113-1124.	2.5	306
192	Genes associated with meningococcal capsule complex are also found in Neisseria gonorrhoeae. Journal of Bacteriology, 1996, 178, 3342-3345.	2.2	26
193	Site-specific insertion of IS1301 and distribution in Neisseria meningitidis strains. Journal of Bacteriology, 1996, 178, 2527-2532.	2.2	51
194	Modulation of cell surface sialic acid expression in Neisseria meningitidis via a transposable genetic element EMBO Journal, 1996, 15, 192-198.	7.8	186
195	Sialic acids of both the capsule and the sialylated lipooligosaccharide of Neisseria meningitis serogroup B are prerequisites for virulence of meningococci in the infant rat. Medical Microbiology and Immunology, 1996, 185, 81-87.	4.8	92
196	Capsule phase variation in Neisseria meningitidis serogroup B by slipped-strand mispairing in the polysialyltransferase gene (siaD): correlation with bacterial invasion and the outbreak of meningococcal disease. Molecular Microbiology, 1996, 20, 1211-1220.	2.5	244
197	The Influence of Capsulation and Lipooligosaccharide Structure on Neutrophil Adhesion Molecule Expression and Endothelial Injury by Neisseria meningitidis. Journal of Infectious Diseases, 1996, 173, 172-179.	4.0	105
198	Modulation of cell surface sialic acid expression in Neisseria meningitidis via a transposable genetic element. EMBO Journal, 1996, 15, 192-8.	7.8	104

#	Article	IF	CITATIONS
199	Contribution of genes from the capsule gene complex (cps) to lipooligosaccharide biosynthesis and serum resistance in Neisseria meningitidis. Molecular Microbiology, 1994, 11, 885-896.	2.5	140
200	Molecular analysis of the biosynthesis pathway of the ?-2,8 polysialic acid capsule by Neisseria meningitidls serogroup B. Molecular Microbiology, 1994, 14, 141-149.	2.5	96
201	The cell wall subproteome ofListeria monocytogenes. , 0, , 153-179.		0