Musa S Shongwe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5450055/publications.pdf

Version: 2024-02-01

567281 610901 24 636 15 24 citations h-index g-index papers 24 24 24 658 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Piperazine-based Semicarbazone Derivatives as Potent Urease Inhibitors: Design, Synthesis, and Bioactivity Screening. Letters in Drug Design and Discovery, 2022, 19, 1111-1120.	0.7	4
2	Unusual Magnetoâ€Structural Features of the Haloâ€Substituted Materials [Fe III (5â€Xâ€salMeen) 2]Y: a Cooperative [HSâ€HS]↔[HSâ€LS] Spin Transition. Chemistry - A European Journal, 2020, 26, 4766-4779.	3.3	15
3	Spectroscopic characterization, crystallographic elucidation and DFT investigation of 5-fluoro-6-(4-methylpiperazin-1-yl)benzo[d]thiazol-2-amine. Journal of Molecular Structure, 2019, 1176, 614-621.	3.6	2
4	1-(Naphthylamino)-1-(p -chlorophenylhydrazono)-2-propanone and 2-(p -tolyldiazenyl)-[1 H]-3-methylbenzo[g]indole: Crystallographic and spectroscopic elucidation of the cyclisation of an arylamidrazone. Journal of Molecular Structure, 2015, 1079 , 307 - 314 .	3.6	1
5	Tuning a Single Ligand System to Stabilize Multiple Spin States of Manganese: A First Example of a Hydrazoneâ€Based Manganese(III) Spinâ€Crossover Complex. Chemistry - A European Journal, 2014, 20, 9693-9701.	3.3	31
6	Coordination versatility of tridentate pyridyl aroylhydrazones towards iron: tracking down the elusive aroylhydrazono-based ferric spin-crossover molecular materials. Dalton Transactions, 2012, 41, 2500.	3.3	52
7	Accessibility and Selective Stabilization of the Principal Spin States of Iron by Pyridyl versus Phenolic Ketimines: Modulation of the ⁶ <i>A</i> ₁ â†" ² <i>T</i> ₂ Ground-State Transformation of the [FeN ₄ O ₂] ⁺ Chromophore. Inorganic Chemistry, 2012, 51, 8241-8253.	4.0	16
8	Iron(III) Complexes with a Biologically Relevant Aroylhydrazone:  Crystallographic Evidence for Coordination Versatility. Inorganic Chemistry, 2007, 46, 9042-9044.	4.0	42
9	Thermally Induced Two-Step, Two-Site Incomplete ⁶ A ₁ a†" ² T ₂ Crossover in a Mononuclear Iron(III) Phenolateâ^'Pyridyl Schiff-Base Complex:  A Rare Crystallographic Observation of the Coexistence of Pure <i>S</i> = ⁵ / ₂ and ¹ / ₂ Metal Centers in the Asymmetric Unit.	4.0	69
10	Unprecedented [V2O]6+Core of a Centrosymmetric Thiosemicarbazonato Dimer:Â Spontaneous Deoxygenation of Oxovanadium(IV). Inorganic Chemistry, 2006, 45, 1103-1107.	4.0	20
11	A Phenolate-Induced Trans Influence:Â Crystallographic Evidence for Unusual Asymmetric Coordination of an α-Diimine in Ternary Complexes of Iron(III) Possessing Biologically Relevant Hetero-Donor N-Centered Tripodal Ligands. Inorganic Chemistry, 2005, 44, 3070-3079.	4.0	53
12	Synergistic anion-directed coordination of ferric and cupric ions to bovine serum transferrin $\hat{a}\in$ " an inorganic perspective. Journal of Inorganic Biochemistry, 2004, 98, 199-208.	3.5	13
13	Complexes of cobalt(iii) with phenolate-containing polydentate ligands and bovine serum apo-transferrin: towards creating spectroscopic models for cobalt(iii)–tyrosinate interactions. Dalton Transactions RSC, 2002, , 4064-4069.	2.3	13
14	Manganese(III) in a pseudo-compressed mixed-donor octahedral environment: synthesis, X-ray crystal structure and physicochemical properties. Polyhedron, 2001, 20, 2195-2201.	2.2	7
15	A series of heteroleptic complexes of the type fac-[MnIIIL2]â^' [H2L=derivatives of N-(2-hydroxybenzyl)glycine or N-(5-nitro-2-hydroxybenzyl)sarcosine] possessing unusual Mn(III) co-ordination spheres. Inorganica Chimica Acta, 1999, 290, 228-236.	2.4	18
16	Molecular Mechanics Modeling of the Cobaloximes and Reevaluation of the Parameters for Modeling of the Cobalt Corrins. Inorganic Chemistry, 1998, 37, 2578-2581.	4.0	41
17	Anion Binding by Transferrins:  Importance of Second-Shell Effects Revealed by the Crystal Structure of Oxalate-Substituted Diferric Lactoferrin,. Biochemistry, 1996, 35, 9007-9013.	2.5	49
18	Molecular structure of [MnIIIL2]–[H2L =N-(3,5-dichloro-2-hydroxybenzyl)glycine]: evidence for a pseudo-Jahn–Teller compression. Journal of the Chemical Society Chemical Communications, 1994, , 887-888.	2.0	13

#	Article	IF	CITATION
19	Synergism and Substitution in the Lactoferrins. Advances in Experimental Medicine and Biology, 1994, 357, 33-44.	1.6	9
20	Anion binding by human lactoferrin: results from crystallographic and physicochemical studies. Biochemistry, 1992, 31, 4451-4458.	2.5	67
21	To fuse or not to fuse? Reactions of [HM4(CO)12BH]- (M = iron, ruthenium) with (phosphine)gold(I) chlorides. Molecular structures of HFe4(CO)12BHAuP(2-MeC6H4)3, [Au(PMePh2)2][[HFe4(CO)12BH]2Au], and [PPN][[HRu4(CO)12BH]2Au]. Organometallics, 1992, 11, 2356-2367.	2.3	31
22	Synthesis and molecular structure of the borido cluster Fe4(CO)12BHAu2{AsPh3}2 and an investigation of the electrochemistry of Fe4(CO)12BHAu2L2, L \hat{i} —» AsPh3 or PPh3. Journal of Organometallic Chemistry, 1991, 408, 7-18.	1.8	19
23	Structural aspects and solution dynamics of the auraferraboranes [Fe4(CO)12Au2L2BH]: the crystal structures of [Fe4(CO)12Au2[P(p-MeC6H4)3]2BH].CH2Cl2 and [HFe4(CO)12Au2(PEt3)2B]. Organometallics, 1989, 8, 2651-2658.	2.3	34
24	An appraisal of the steric versus electronic requirements of gold(I) phosphine substituents in clusters: the crystal structure of [HFe4(CO)12{AuPEt3}2B]. Organometallics, 1988, 7, 1885-1887.	2.3	17