
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5449950/publications.pdf Version: 2024-02-01



Ορται Ηανινά

| #  | Article                                                                                                                                                                                                                                                                                                               | IF               | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 1  | Challenges in the development of advanced Li-ion batteries: a review. Energy and Environmental Science, 2011, 4, 3243.                                                                                                                                                                                                | 15.6             | 5,644     |
| 2  | Prototype systems for rechargeable magnesium batteries. Nature, 2000, 407, 724-727.                                                                                                                                                                                                                                   | 13.7             | 1,946     |
| 3  | Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials<br>Chemistry A, 2017, 5, 12653-12672.                                                                                                                                                                                  | 5.2              | 1,152     |
| 4  | Advances in understanding mechanisms underpinning lithium–air batteries. Nature Energy, 2016, 1, .                                                                                                                                                                                                                    | 19.8             | 1,050     |
| 5  | Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes. Journal of the<br>Electrochemical Society, 2017, 164, A6220-A6228.                                                                                                                                                                  | 1.3              | 581       |
| 6  | On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials. Chemistry of<br>Materials, 2010, 22, 860-868.                                                                                                                                                                                        | 3.2              | 509       |
| 7  | Simultaneous Measurements and Modeling of the Electrochemical Impedance and the Cyclic<br>Voltammetric Characteristics of Graphite Electrodes Doped with Lithium. Journal of Physical<br>Chemistry B, 1997, 101, 4630-4640.                                                                                           | 1.2              | 493       |
| 8  | Progress in Rechargeable Magnesium Battery Technology. Advanced Materials, 2007, 19, 4260-4267.                                                                                                                                                                                                                       | 11.1             | 477       |
| 9  | New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. Journal of Power Sources, 1999, 81-82, 95-111.                                                                                                                                            | 4.0              | 418       |
| 10 | Diffusion Coefficients of Lithium Ions during Intercalation into Graphite Derived from the<br>Simultaneous Measurements and Modeling of Electrochemical Impedance and Potentiostatic<br>Intermittent Titration Characteristics of Thin Graphite Electrodes. Journal of Physical Chemistry B,<br>1997, 101, 4641-4647. | 1.2              | 401       |
| 11 | Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li<br>ion batteries. Energy and Environmental Science, 2018, 11, 1271-1279.                                                                                                                                         | 15.6             | 322       |
| 12 | Li–O <sub>2</sub> cells with LiBr as an electrolyte and a redox mediator. Energy and Environmental Science, 2016, 9, 2334-2345.                                                                                                                                                                                       | 15.6             | 229       |
| 13 | A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries.<br>Journal of Electroceramics, 2009, 22, 13-19.                                                                                                                                                                 | 0.8              | 225       |
| 14 | Understanding the behavior of Li–oxygen cells containing LiI. Journal of Materials Chemistry A, 2015,<br>3, 8855-8864.                                                                                                                                                                                                | 5.2              | 187       |
| 15 | Integrated Materials xLi[sub 2]MnO[sub 3]â‹(1â^'x)LiMn[sub 1/3]Ni[sub 1/3]Co[sub 1/3]O[sub 2] (x=0.3,â€,0.4<br>Synthesized. Journal of the Electrochemical Society, 2010, 157, A1121.                                                                                                                                 | 5,â€,0.7)<br>1.3 | 185       |
| 16 | Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. Journal of Materials Chemistry, 2000, 10, 1125-1129.                                                                                                                                                       | 6.7              | 179       |
| 17 | Impedance of a Single Intercalation Particle and of Non-Homogeneous, Multilayered Porous<br>Composite Electrodes for Li-ion Batteries. Journal of Physical Chemistry B, 2004, 108, 11693-11703.                                                                                                                       | 1.2              | 165       |
| 18 | The electrochemistry of activated carbonaceous materials: past, present, and future. Journal of Solid<br>State Electrochemistry, 2011, 15, 1563-1578.                                                                                                                                                                 | 1.2              | 161       |

| #  | Article                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Testing Carbon-Coated VOx Prepared via Reaction under Autogenic Pressure at Elevated Temperature as Li-Insertion Materials. Advanced Materials, 2006, 18, 1431-1436.                                                                                                                          | 11.1 | 149       |
| 20 | The Study of Surface Film Formation on Noble-Metal Electrodes in Alkyl Carbonates/Li Salt Solutions,<br>Using Simultaneous in Situ AFM, EQCM, FTIR, and EIS. Langmuir, 1999, 15, 2947-2960.                                                                                                   | 1.6  | 131       |
| 21 | Mechanistic Role of Li <sup>+</sup> Dissociation Level in Aprotic Li–O <sub>2</sub> Battery. ACS<br>Applied Materials & Interfaces, 2016, 8, 5300-5307.                                                                                                                                       | 4.0  | 120       |
| 22 | Study of the Lithium-Rich Integrated Compound<br>xLi <sub>2</sub> MnO <sub>3</sub> ·(1-x)LiMO <sub>2</sub> (x around 0.5; M = Mn, Ni, Co; 2:2:1) and Its<br>Electrochemical Activity as Positive Electrode in Lithium Cells. Journal of the Electrochemical<br>Society, 2013, 160, A324-A337. | 1.3  | 119       |
| 23 | Direct Assessment of Nanoconfined Water in 2D Ti <sub>3</sub> C <sub>2</sub> Electrode Interspaces<br>by a Surface Acoustic Technique. Journal of the American Chemical Society, 2018, 140, 8910-8917.                                                                                        | 6.6  | 102       |
| 24 | Preparation and Properties of Metal Organic Framework/Activated Carbon Composite Materials.<br>Langmuir, 2016, 32, 4935-4944.                                                                                                                                                                 | 1.6  | 97        |
| 25 | Composite Carbon Nanotube/Carbon Electrodes for Electrical Double‣ayer Super Capacitors.<br>Angewandte Chemie - International Edition, 2012, 51, 1568-1571.                                                                                                                                   | 7.2  | 92        |
| 26 | In Situ Real-Time Mechanical and Morphological Characterization of Electrodes for Electrochemical<br>Energy Storage and Conversion by Electrochemical Quartz Crystal Microbalance with Dissipation<br>Monitoring. Accounts of Chemical Research, 2018, 51, 69-79.                             | 7.6  | 92        |
| 27 | Studies of Li and Mn-Rich Li <sub>x</sub> [MnNiCo]O <sub>2</sub> Electrodes: Electrochemical<br>Performance, Structure, and the Effect of the Aluminum Fluoride Coating. Journal of the<br>Electrochemical Society, 2013, 160, A2220-A2233.                                                   | 1.3  | 87        |
| 28 | Kinetic and Thermodynamic Studies of Mg[sup 2+] and Li[sup +] Ion Insertion into the Mo[sub 6]S[sub 8] Chevrel Phase. Journal of the Electrochemical Society, 2004, 151, A1044.                                                                                                               | 1.3  | 85        |
| 29 | The Rate-Determining Step of Electroadsorption Processes into Nanoporous Carbon Electrodes Related to Water Desalination. Journal of Physical Chemistry C, 2009, 113, 21319-21327.                                                                                                            | 1.5  | 79        |
| 30 | Activated Carbon Modified with Carbon Nanodots as Novel Electrode Material for Supercapacitors.<br>Journal of Physical Chemistry C, 2016, 120, 13406-13413.                                                                                                                                   | 1.5  | 72        |
| 31 | Carbon Electrodes Modified with TiO2 /Metal Nanoparticles and Their Application for the Detection of Trinitrotoluene. Advanced Functional Materials, 2007, 17, 1487-1492.                                                                                                                     | 7.8  | 69        |
| 32 | Review—A Comparative Evaluation of Redox Mediators for Li-O <sub>2</sub> Batteries: A Critical<br>Review. Journal of the Electrochemical Society, 2018, 165, A2274-A2293.                                                                                                                     | 1.3  | 63        |
| 33 | Can Anions Be Inserted into MXene?. Journal of the American Chemical Society, 2021, 143, 12552-12559.                                                                                                                                                                                         | 6.6  | 63        |
| 34 | On the challenge of large energy storage by electrochemical devices. Electrochimica Acta, 2020, 354, 136771.                                                                                                                                                                                  | 2.6  | 62        |
| 35 | Optimized Bicompartment Two Solution Cells for Effective and Stable Operation of Li–O <sub>2</sub><br>Batteries. Advanced Energy Materials, 2017, 7, 1701232.                                                                                                                                 | 10.2 | 61        |
| 36 | An Aqueous Reduction Method To Synthesize Spinel-LiMn2O4Nanoparticles as a Cathode Material for<br>Rechargeable Lithium-Ion Batteries. Chemistry of Materials, 2003, 15, 4211-4216.                                                                                                           | 3.2  | 60        |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Assessing optimal pore-to-ion size relations in the design of porous poly(vinylidene chloride) carbons<br>for EDL capacitors. Applied Physics A: Materials Science and Processing, 2006, 82, 607-613.                                                         | 1.1 | 60        |
| 38 | Hierarchical activated carbon microfiber (ACM) electrodes for rechargeable Li–O2 batteries. Journal of Materials Chemistry A, 2013, 1, 5021.                                                                                                                  | 5.2 | 54        |
| 39 | Effect of cycling conditions on the electrochemical performance of high capacity Li and Mn-rich cathodes for Li-ion batteries. Journal of Power Sources, 2016, 318, 9-17.                                                                                     | 4.0 | 47        |
| 40 | A Synopsis of recent attempts toward construction of rechargeable batteries utilizing conducting polymer cathodes and anodes. Polymers for Advanced Technologies, 2002, 13, 697-713.                                                                          | 1.6 | 46        |
| 41 | Electrochemical Performance of a Layered-Spinel Integrated<br>Li[Ni <sub>1/3</sub> Mn <sub>2/3</sub> ]O <sub>2</sub> as a High Capacity Cathode Material for Li-Ion<br>Batteries. Chemistry of Materials, 2015, 27, 2600-2611.                                | 3.2 | 46        |
| 42 | The effect of milling on the performance of a Mo6S8 Chevrel phase as a cathode material for rechargeable Mg batteries. Journal of Solid State Electrochemistry, 2005, 9, 259-266.                                                                             | 1.2 | 44        |
| 43 | The application of electroanalytical methods to the analysis of phase transitions during intercalation of ions into electrodes. Journal of Solid State Electrochemistry, 2007, 11, 1031-1042.                                                                 | 1.2 | 40        |
| 44 | Use of 1,10-Phenanthroline as an Additive for High-Performance Supercapacitors. Journal of Physical<br>Chemistry C, 2015, 119, 12165-12173.                                                                                                                   | 1.5 | 40        |
| 45 | Composite Carbon Nano-Tubes (CNT)/Activated Carbon Electrodes for Non-Aqueous Super Capacitors<br>Using Organic Electrolyte Solutions. Journal of the Electrochemical Society, 2013, 160, A1282-A1285.                                                        | 1.3 | 39        |
| 46 | Micromorphological Dynamics of Polypyrrole Films in Propylene Carbonate Solutions Studied by in<br>Situ AFM and EQCM. Langmuir, 2003, 19, 9804-9811.                                                                                                          | 1.6 | 38        |
| 47 | Mass-producible polyhedral macrotube carbon arrays with multi-hole cross-section profiles: superb<br>3D tertiary porous electrode materials for supercapacitors and capacitive deionization cells. Journal<br>of Materials Chemistry A, 2020, 8, 16312-16322. | 5.2 | 38        |
| 48 | Development of Anion Stereoselective, Activated Carbon Molecular Sieve Electrodes Prepared by Chemical Vapor Deposition. Journal of Physical Chemistry C, 2009, 113, 7316-7321.                                                                               | 1.5 | 35        |
| 49 | Electrochemical performance of<br>Na <sub>0.6</sub> [Li <sub>0.2</sub> Ni <sub>0.2</sub> Mn <sub>0.6</sub> ]O <sub>2</sub> cathodes with<br>high-working average voltage for Na-ion batteries. Journal of Materials Chemistry A, 2017, 5, 5858-5864.          | 5.2 | 35        |
| 50 | Aqueous energy-storage cells based on activated carbon and LiMn 2 O 4 electrodes. Journal of Power<br>Sources, 2017, 354, 148-156.                                                                                                                            | 4.0 | 32        |
| 51 | Superfast high-energy storage hybrid device composed of MXene and Chevrel-phase electrodes operated in saturated LiCl electrolyte solution. Journal of Materials Chemistry A, 2019, 7, 19761-19773.                                                           | 5.2 | 32        |
| 52 | New aqueous energy storage devices comprising graphite cathodes, MXene anodes and concentrated sulfuric acid solutions. Energy Storage Materials, 2020, 32, 1-10.                                                                                             | 9.5 | 32        |
| 53 | Feasibility of Full (Li-Ion)–O <sub>2</sub> Cells Comprised of Hard Carbon Anodes. ACS Applied<br>Materials & Interfaces, 2017, 9, 4352-4361.                                                                                                                 | 4.0 | 31        |
| 54 | MXene conductive binder for improving performance of sodium-ion anodes in water-in-salt electrolyte. Nano Energy, 2021, 79, 105433.                                                                                                                           | 8.2 | 31        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                 | IF                       | CITATIONS            |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|
| 55 | Understanding the Role of Alumina (Al <sub>2</sub> 0 <sub>3</sub> ), Pentalithium Aluminate<br>(Li <sub>5</sub> AlO <sub>4</sub> ), and Pentasodium Aluminate (Na <sub>5</sub> AlO <sub>4</sub> )<br>Coatings on the Li and Mnâ€Rich NCM Cathode Material<br>0.33Li <sub>2</sub> MnO <sub>3</sub> ·0.67Li(Ni <sub>0.4</sub> Co <sub>0.2</sub> Mn <sub>0.4</sub> )O <sub< td=""><td>7.8<br/>&gt;2</td><td>30</td></sub<> | 7.8<br>>2                | 30                   |
| 56 | Sodium oxygen batteries: one step further with catalysis by ruthenium nanoparticles. Journal of Materials Chemistry A, 2017, 5, 20678-20686.                                                                                                                                                                                                                                                                            | 5.2                      | 29                   |
| 57 | Enhanced Performance of Ti3C2Tx (MXene) Electrodes in Concentrated ZnCl2 Solutions: A Combined Electrochemical and EQCM-D Study. Energy Storage Materials, 2021, 38, 535-541.                                                                                                                                                                                                                                           | 9.5                      | 29                   |
| 58 | Behavior of lithiated graphite electrodes comprising silica based binder. Journal of Applied<br>Electrochemistry, 1998, 28, 1051-1059.                                                                                                                                                                                                                                                                                  | 1.5                      | 23                   |
| 59 | Electrochemical Quartz Crystal Microbalance with Dissipation Real-Time Hydrodynamic Spectroscopy of Porous Solids in Contact with Liquids. Analytical Chemistry, 2016, 88, 10151-10157.                                                                                                                                                                                                                                 | 3.2                      | 22                   |
| 60 | Linking structure to performance of<br>Li <sub>1.2</sub> Mn <sub>0.54</sub> Ni <sub>0.13</sub> Co <sub>0.13</sub> O <sub>2</sub> (Li and Mn) Tj ETQ<br>2020, 22, 9098-9109.                                                                                                                                                                                                                                             | 9000 rgl                 | $B_{22}^{T}/Overloc$ |
| 61 | The Study of Activated Carbon/CNT/MoO3Electrodes for Aqueous Pseudo-Capacitors. Journal of the Electrochemical Society, 2013, 160, A1489-A1496.                                                                                                                                                                                                                                                                         | 1.3                      | 21                   |
| 62 | Kinetics of electrochemically induced phase transitions in ion-insertion electrodes and the chemical diffusion coefficient. Journal of Solid State Electrochemistry, 2008, 12, 409-420.                                                                                                                                                                                                                                 | 1.2                      | 19                   |
| 63 | Metal–organic complexes as redox candidates for carbon based pseudo-capacitors. Journal of<br>Materials Chemistry A, 2014, 2, 18132-18138.                                                                                                                                                                                                                                                                              | 5.2                      | 19                   |
| 64 | Ammonia Treatment of<br>0.35Li <sub>2</sub> MnO <sub>3</sub> ·0.65LiNi <sub>0.35</sub> Mn <sub>0.45</sub> Co <sub>0.20</sub> O <sub>Material: Insights from Solid-State NMR Analysis. Journal of Physical Chemistry C, 2018, 122, 3773-3779.</sub>                                                                                                                                                                      | ub52 <td><b>)1</b>9</td> | <b>)1</b> 9          |
| 65 | Na-ion battery cathode materials prepared by electrochemical ion exchange from alumina-coated<br>Li <sub>1+x</sub> Mn <sub>0.54</sub> Co <sub>0.13</sub> Ni <sub>0.1+y</sub> O <sub>2</sub> . Journal of<br>Materials Chemistry A, 2018, 6, 14816-14827.                                                                                                                                                                | 5.2                      | 19                   |
| 66 | Noteworthy electroanalytical features of the stage 4 to stage 3 phase transition in lithiated graphite.<br>Journal of Solid State Electrochemistry, 2003, 8, 40-43.                                                                                                                                                                                                                                                     | 1.2                      | 18                   |
| 67 | Review on Engineering and Characterization of Activated Carbon Electrodes for Electrochemical<br>Double Layer Capacitors and Separation Processes. Israel Journal of Chemistry, 2008, 48, 287-303.                                                                                                                                                                                                                      | 1.0                      | 17                   |
| 68 | Assessing the Concentration Effect on Hydration Radii in Aqueous Solutions by Electroadsorption on a Carbon Molecular Sieve Electrode. Journal of Physical Chemistry C, 2010, 114, 13354-13361.                                                                                                                                                                                                                         | 1.5                      | 17                   |
| 69 | Double gas treatment: A successful approach for stabilizing the Li and Mn-rich NCM cathode materials' electrochemical behavior. Energy Storage Materials, 2022, 45, 74-91.                                                                                                                                                                                                                                              | 9.5                      | 17                   |
| 70 | Electroanalytical features of non-uniformly doped conducting<br>poly-3-(3,4,5-trifluorophenyl)thiophene films. Physical Chemistry Chemical Physics, 2003, 5, 2886.                                                                                                                                                                                                                                                      | 1.3                      | 15                   |
| 71 | Controllable and stable organometallic redox mediators for lithium oxygen batteries. Materials Horizons, 2020, 7, 214-222.                                                                                                                                                                                                                                                                                              | 6.4                      | 15                   |
| 72 | Sonochemical and soft-chemical intercalation of lithium ions into MnO2 polymorphs. Journal of Solid State Electrochemistry, 2004, 8, 957-967.                                                                                                                                                                                                                                                                           | 1.2                      | 12                   |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Improving Amorphous Carbon Anodes for Na Ion Batteries by Surface Treatment of a Presodiated<br>Electrode with Al <sub>2</sub> O <sub>3</sub> . Langmuir, 2019, 35, 11670-11678.                                                            | 1.6 | 12        |
| 74 | Anions-capture materials for electrochemical electrode deionization: Mechanism, performance, and development prospects. Desalination, 2021, 520, 115336.                                                                                    | 4.0 | 12        |
| 75 | Quantification of porosity in extensively nanoporous thin films in contact with gases and liquids.<br>Nature Communications, 2019, 10, 4394.                                                                                                | 5.8 | 11        |
| 76 | Thermally reduced graphene oxide as an electrode for CDI processes: A compromise between performance and scalability?. Desalination, 2020, 492, 114599.                                                                                     | 4.0 | 11        |
| 77 | Unveiling ionic diffusion in MgNiMnO4 cathode material for Mg-ion batteries via combined computational and experimental studies. Journal of Solid State Electrochemistry, 2019, 23, 3209-3216.                                              | 1.2 | 10        |
| 78 | Sustainable existence of solid mercury (Hg) nanoparticles at room temperature and their applications.<br>Chemical Science, 2021, 12, 3226-3238.                                                                                             | 3.7 | 10        |
| 79 | Toward High Performance All Solid-State Na Batteries: Investigation of Electrolytes Comprising<br>NaPF <sub>6</sub> , Poly(ethylene oxide) and TiO <sub>2</sub> . Journal of the Electrochemical Society,<br>2021, 168, 110553.             | 1.3 | 10        |
| 80 | Ultrafast anode for high voltage aqueous Li-ion batteries. Journal of Solid State Electrochemistry,<br>2012, 16, 3443-3448.                                                                                                                 | 1.2 | 9         |
| 81 | Effect of the Structure of Nonuniform Conducting Polymer Films on Their Electrochemical<br>Impedance Response. Russian Journal of Electrochemistry, 2004, 40, 273-279.                                                                      | 0.3 | 8         |
| 82 | Alumina thin coat on pre-charged soft carbon anode reduces electrolyte breakdown and maintains<br>sodiation sites active in Na-ion battery – Insights from NMR measurements. Journal of Solid State<br>Chemistry, 2021, 298, 122121.        | 1.4 | 8         |
| 83 | Horizons for Modern Electrochemistry Related to Energy Storage and Conversion, a Review. Israel<br>Journal of Chemistry, 2021, 61, 11-25.                                                                                                   | 1.0 | 6         |
| 84 | Influence of pH on the Structure of the Aqueous Sonolysis Products of Manganese(III)<br>Acetylacetonate. Journal of Materials Research, 2002, 17, 1706-1710.                                                                                | 1.2 | 5         |
| 85 | Aqueous Energy Storage Device Based on LiMn 2 O 4 (Spinel) Positive Electrode and<br>Anthraquinoneâ€Modified Carbonâ€Negative Electrode. Energy Technology, 2019, 7, 1900589.                                                               | 1.8 | 5         |
| 86 | Conversion of LiMn2â^'x Co x O4 spinel on the basis of electrolytically Co-deposited Mn,Co-oxide precursors in a lithium battery. Russian Journal of Applied Chemistry, 2014, 87, 1260-1267.                                                | 0.1 | 2         |
| 87 | Combined nanofiltration and advanced oxidation processes with bifunctional carbon nanomembranes. RSC Advances, 2021, 11, 14777-14786.                                                                                                       | 1.7 | 2         |
| 88 | Recent Studies of Interfacial Phenomena which Determine the Electrochemical Behavior of Lithium<br>and Lithiated Carbon Anodes with the Emphasis on In Situ Techniques. Materials Research Society<br>Symposia Proceedings, 1997, 496, 587. | 0.1 | 1         |
| 89 | Integral Role of the NiS Electrode/Electrolyte Interface in the Redox Reaction with Lithium. Surface<br>Engineering and Applied Electrochemistry, 2020, 56, 665-674.                                                                        | 0.3 | 1         |
| 90 | Title is missing!. Journal of Applied Electrochemistry, 2003, 33, 989-993.                                                                                                                                                                  | 1.5 | 0         |