Beatriz Valle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5449943/publications.pdf Version: 2024-02-01

REATDIZ VALLE

#	Article	IF	CITATIONS
1	Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst. Journal of Catalysis, 2012, 285, 304-314.	3.1	175
2	Selective Production of Aromatics by Crude Bio-oil Valorization with a Nickel-Modified HZSM-5 Zeolite Catalyst. Energy & Fuels, 2010, 24, 2060-2070.	2.5	164
3	Pyrolytic lignin removal for the valorization of biomass pyrolysis crude bioâ€oil by catalytic transformation. Journal of Chemical Technology and Biotechnology, 2010, 85, 132-144.	1.6	159
4	Undesired components in the transformation of biomass pyrolysis oil into hydrocarbons on an HZSM-5 zeolite catalyst. Journal of Chemical Technology and Biotechnology, 2005, 80, 1244-1251.	1.6	135
5	Selective production of olefins from bioethanol on HZSM-5 zeolite catalysts treated with NaOH. Applied Catalysis B: Environmental, 2010, 97, 299-306.	10.8	135
6	Hydrothermally stable HZSM-5 zeolite catalysts for the transformation of crude bio-oil into hydrocarbons. Applied Catalysis B: Environmental, 2010, 100, 318-327.	10.8	124
7	Recent research progress on bioâ€oil conversion into bioâ€fuels and raw chemicals: a review. Journal of Chemical Technology and Biotechnology, 2019, 94, 670-689.	1.6	124
8	Operating conditions for attenuating Ni/La2O3–αAl2O3 catalyst deactivation in the steam reforming of bio-oil aqueous fraction. Fuel Processing Technology, 2013, 115, 222-232.	3.7	122
9	Olefin Production by Catalytic Transformation of Crude Bio-Oil in a Two-Step Process. Industrial & Engineering Chemistry Research, 2010, 49, 123-131.	1.8	119
10	Catalysts of Ni/α-Al2O3 and Ni/La2O3-αAl2O3 for hydrogen production by steam reforming of bio-oil aqueous fraction with pyrolytic lignin retention. International Journal of Hydrogen Energy, 2013, 38, 1307-1318.	3.8	111
11	Effect of calcination/reduction conditions of Ni/La2O3–αAl2O3 catalyst on its activity and stability for hydrogen production by steam reforming of raw bio-oil/ethanol. Applied Catalysis B: Environmental, 2014, 147, 402-410.	10.8	111
12	Effect of operating conditions on the coke nature and HZSM-5 catalysts deactivation in the transformation of crude bio-oil into hydrocarbons. Catalysis Today, 2012, 195, 106-113.	2.2	101
13	Role of oxygenates and effect of operating conditions in the deactivation of a Ni supported catalyst during the steam reforming of bio-oil. Green Chemistry, 2017, 19, 4315-4333.	4.6	97
14	Hydrothermal stability of HZSM-5 catalysts modified with Ni for the transformation of bioethanol into hydrocarbons. Fuel, 2010, 89, 3365-3372.	3.4	96
15	Steam reforming of raw bio-oil over Ni/La2O3-αAl2O3: Influence of temperature on product yields and catalyst deactivation. Fuel, 2018, 216, 463-474.	3.4	89
16	Attenuation of Catalyst Deactivation by Cofeeding Methanol for Enhancing the Valorisation of Crude Bio-oil. Energy & Fuels, 2009, 23, 4129-4136.	2.5	88
17	Biomass to hydrogen-rich gas via steam reforming of raw bio-oil over Ni/La2O3-αAl2O3 catalyst: Effect of space-time and steam-to-carbon ratio. Fuel, 2018, 216, 445-455.	3.4	79
18	Kinetic modelling for the transformation of bioethanol into olefins on a hydrothermally stable Ni–HZSM-5 catalyst considering the deactivation by coke. Chemical Engineering Journal, 2011, 167, 262-277.	6.6	73

BEATRIZ VALLE

#	Article	IF	CITATIONS
19	Steam Reforming of Raw Bio-oil in a Fluidized Bed Reactor with Prior Separation of Pyrolytic Lignin. Energy & Fuels, 2013, 27, 7549-7559.	2.5	71
20	Origin and Nature of Coke in Ethanol Steam Reforming and Its Role in Deactivation of Ni/La ₂ O ₃ –αAl ₂ O ₃ Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 14736-14751.	1.8	70
21	Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catalysis Today, 2005, 106, 118-122.	2.2	62
22	Kinetic Model for the Transformation of Bioethanol into Olefins over a HZSM-5 Zeolite Treated with Alkali. Industrial & Engineering Chemistry Research, 2010, 49, 10836-10844.	1.8	52
23	Temperature Programmed Oxidation Coupled with Inâ€Situ Techniques Reveal the Nature and Location of Coke Deposited on a Ni/La ₂ O ₃ â€i±Al ₂ O ₃ Catalyst in the Steam Reforming of Bioâ€oil. ChemCatChem, 2018, 10, 2311-2321.	1.8	44
24	Effect of reaction conditions on the deactivation by coke of a NiAl2O4 spinel derived catalyst in the steam reforming of bio-oil. Applied Catalysis B: Environmental, 2021, 297, 120445.	10.8	44
25	Cost-effective upgrading of biomass pyrolysis oil using activated dolomite as a basic catalyst. Fuel Processing Technology, 2019, 195, 106142.	3.7	43
26	Upgrading of Bio-Oil in a Continuous Process with Dolomite Catalyst. Energy & Fuels, 2014, 28, 6419-6428.	2.5	42
27	Compositional Insights and Valorization Pathways for Carbonaceous Material Deposited During Bioâ€Oil Thermal Treatment. ChemSusChem, 2014, 7, 2597-2608.	3.6	41
28	Steam Reforming of the Bio-Oil Aqueous Fraction in a Fluidized Bed Reactor with in Situ CO ₂ Capture. Industrial & Engineering Chemistry Research, 2013, 52, 17087-17098.	1.8	40
29	Kinetic model considering catalyst deactivation for the steam reforming of bio-oil over Ni/La2O3-αAl2O3. Chemical Engineering Journal, 2018, 332, 192-204.	6.6	36
30	Role of zeolite properties in bio-oil deoxygenation and hydrocarbons production by catalytic cracking. Fuel Processing Technology, 2022, 227, 107130.	3.7	36
31	Effect of phenols extraction on the behavior of Ni-spinel derived catalyst for raw bio-oil steam reforming. International Journal of Hydrogen Energy, 2019, 44, 12593-12603.	3.8	35
32	Hydrogen production by steam reforming of bio-oil/bio-ethanol mixtures in a continuous thermal-catalytic process. International Journal of Hydrogen Energy, 2014, 39, 6889-6898.	3.8	31
33	Regeneration of a HZSM-5 zeolite catalyst deactivated in the transformation of aqueous ethanol into hydrocarbons. Catalysis Today, 2005, 107-108, 410-416.	2.2	29
34	Dual catalyst-sorbent role of dolomite in the steam reforming of raw bio-oil for producing H2-rich syngas. Fuel Processing Technology, 2020, 200, 106316.	3.7	28
35	Deactivation kinetics of a HZSMâ \in 5 zeolite catalyst treated with alkali for the transformation of bioâ \in ethanol into hydrocarbons. AICHE Journal, 2012, 58, 526-537.	1.8	27
36	Deactivation of Ni spinel derived catalyst during the oxidative steam reforming of raw bio-oil. Fuel, 2020, 276, 117995.	3.4	26

BEATRIZ VALLE

#	Article	IF	CITATIONS
37	Integration of Thermal Treatment and Catalytic Transformation for Upgrading Biomass Pyrolysis Oil. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	21
38	Feasibility of online pre-reforming step with dolomite for improving Ni spinel catalyst stability in the steam reforming of raw bio-oil. Fuel Processing Technology, 2021, 215, 106769.	3.7	20
39	Kinetic Behavior of the SAPO-18 Catalyst in the Transformation of Methanol into Olefins. Industrial & Engineering Chemistry Research, 2005, 44, 6605-6614.	1.8	17
40	Unveiling the deactivation by coke of NiAl2O4 spinel derived catalysts in the bio-oil steam reforming: Role of individual oxygenates. Fuel, 2022, 321, 124009.	3.4	17
41	Combined effect of bio-oil composition and temperature on the stability of Ni spinel derived catalyst for hydrogen production by steam reforming. Fuel, 2022, 326, 124966.	3.4	16
42	Strategies for maximizing the bio-oil valorization by catalytic transformation. Journal of Cleaner Production, 2015, 88, 345-348.	4.6	11
43	Kinetic Model for the Conversion of Chloromethane into Hydrocarbons over a HZSM-5 Zeolite Catalyst. Industrial & Engineering Chemistry Research, 2018, 57, 908-919.	1.8	11
44	Reaction network of the chloromethane conversion into light olefins using a HZSM-5 zeolite catalyst. Journal of Industrial and Engineering Chemistry, 2018, 61, 427-436.	2.9	10
45	Development of Alternative Catalysts Based on HZSM-5 Zeolite for the BTO Process. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	3