Michael J Ryan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5449890/publications.pdf

Version: 2024-02-01

156	10,998	53	101
papers	citations	h-index	g-index
162	162	162	5157
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Local competitive environment and male condition influence within-bout calling patterns in $t\tilde{A}^{e}$ ngara frogs. Bioacoustics, 2023, 32, 121-142.	1.7	1
2	Sexual selection and the ascent of women: Mate choice research since Darwin. Science, 2022, 375, eabi6308.	12.6	38
3	Tuned in to communication sounds: Neuronal sensitivity in the túngara frog midbrain to frequency modulated signals. PLoS ONE, 2022, 17, e0268383.	2.5	2
4	Long-term memory in frog-eating bats. Current Biology, 2022, 32, R557-R558.	3.9	4
5	Cross-modal facilitation of auditory discrimination in a frog. Biology Letters, 2022, 18, .	2.3	4
6	Arginine vasotocin affects vocal behavior but not selective responses to conspecific calls in male $t\tilde{A}^2$ ngara frogs. Hormones and Behavior, 2021, 128, 104891.	2.1	1
7	Flexible habitat choice by aphids exposed to multiple cues reflecting present and future benefits. Behavioral Ecology, 2021, 32, 286-296.	2.2	2
8	Darwin, sexual selection, and the brain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
9	Multisensory modalities increase working memory for mating signals in a treefrog. Journal of Animal Ecology, 2021, 90, 1455-1465.	2.8	7
10	Estrogenic Modulation of Retinal Sensitivity in Reproductive Female Túngara Frogs. Integrative and Comparative Biology, 2021, 61, 231-239.	2.0	1
11	The Use of Evoked Vocal Responses to Detect Cryptic, Low-Density Frogs in the Field. Journal of Herpetology, 2021, 55, .	0.5	О
12	Covariation among multimodal components in the courtship display of the $t\tilde{A}^e$ ngara frog. Journal of Experimental Biology, 2021, 224, .	1.7	6
13	Floating frogs sound larger: environmental constraints on signal production drives call frequency changes. Die Naturwissenschaften, 2020, 107, 41.	1.6	5
14	Sensory ecology of the frog-eating bat, <i>Trachops cirrhosus</i> , from DNA metabarcoding and behavior. Behavioral Ecology, 2020, 31, 1420-1428.	2.2	14
15	Understanding the Role of Incentive Salience in Sexual Decision-Making. Integrative and Comparative Biology, 2020, 60, 712-721.	2.0	9
16	Perspectives regarding future experiments on categorical perception: a comment on Green et al Behavioral Ecology, 2020, 31, 868-868.	2.2	1
17	â€~Crazy love': nonlinearity and irrationality in mate choice. Animal Behaviour, 2019, 147, 189-198.	1.9	26
18	Transitive foraging behaviour in frog-eating bats. Animal Behaviour, 2019, 154, 47-55.	1.9	3

#	Article	IF	CITATIONS
19	Multimodal stimuli regulate reproductive behavior and physiology in male $t\tilde{A}^\varrho$ ngara frogs. Hormones and Behavior, 2019, 115, 104546.	2.1	14
20	Effects of information load on response times in frogs and bats: mate choice vs. prey choice. Behavioral Ecology and Sociobiology, 2019, 73, 1.	1.4	9
21	Epigenomic changes in the $t\tilde{A}^{e}$ ngara frog (Physalaemus pustulosus): possible effects of introduced fungal pathogen and urbanization. Evolutionary Ecology, 2019, 33, 671-686.	1.2	7
22	Nineteen Years of Consistently Positive and Strong Female Mate Preferences despite Individual Variation. American Naturalist, 2019, 194, 125-134.	2.1	29
23	Environmental heterogeneity alters mate choice behavior for multimodal signals. Behavioral Ecology and Sociobiology, 2019, 73, 1.	1.4	12
24	Behavioral and neural auditory thresholds in a frog. Environmental Epigenetics, 2019, 65, 333-341.	1.8	7
25	Does sexual dimorphism vary by population? Laryngeal and ear anatomy in cricket frogs. Environmental Epigenetics, 2019, 65, 343-352.	1.8	2
26	Adaptive changes in sexual signalling in response to urbanization. Nature Ecology and Evolution, 2019, 3, 374-380.	7.8	72
27	Modelling the production of complex calls in the $t\tilde{A}^e$ ngara frog (<i>Physalaemus pustulosus</i>). Bioacoustics, 2019, 28, 345-363.	1.7	6
28	Reproductive State Modulates Retinal Sensitivity to Light in Female Túngara Frogs. Frontiers in Behavioral Neuroscience, 2019, 13, 293.	2.0	11
29	Acoustic communication in the Bocon toadfish (Amphichthys cryptocentrus). Environmental Biology of Fishes, 2018, 101, 1175-1193.	1.0	7
30	A laryngeal fibrous mass impacts the acoustics and attractiveness of a multicomponent call in $t\tilde{A}^2$ ngara frogs (<i>Physalaemus pustulosus</i>). Bioacoustics, 2018, 27, 231-243.	1.7	9
31	Cognitive constraints on optimal foraging in frog-eating bats. Animal Behaviour, 2018, 143, 43-50.	1.9	11
32	Schema vs. primitive perceptual grouping: the relative weighting of sequential vs. spatial cues during an auditory grouping task in frogs. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 175-182.	1.6	3
33	Rationality in decision-making in the fringe-lipped bat, Trachops cirrhosus. Behavioral Ecology and Sociobiology, 2017, 71, 1.	1.4	8
34	Perceived Synchrony of Frog Multimodal Signal Components IsÂInfluenced by Content and Order. Integrative and Comparative Biology, 2017, 57, 902-909.	2.0	9
35	Vasotocin induces sexually dimorphic effects on acoustically-guided behavior in a tropical frog. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 265-273.	1.6	9
36	Responses of male cricket frogs (<i>Acris crepitans</i>) to attenuated and degraded advertisement calls. Ethology, 2017, 123, 357-364.	1.1	6

#	Article	IF	CITATIONS
37	Environmental conditions limit attractiveness of a complex sexual signal in the $t\tilde{A}^{\varrho}$ ngara frog. Nature Communications, 2017, 8, 1891.	12.8	14
38	Interactions between complex multisensory signal components result in unexpected mate choice responses. Animal Behaviour, 2017, 134, 239-247.	1.9	30
39	Major histocompatibility complex selection dynamics in pathogen-infected túngara frog () Tj ETQq1 1 0.784314	⊦rgBŢ/Ov	erlock 10 Tf
40	Receiver discriminability drives the evolution of complex sexual signals by sexual selection. Evolution; International Journal of Organic Evolution, 2016, 70, 922-927.	2.3	15
41	Female $t\tilde{A}^{\varrho}$ ngara frogs do not experience the continuity illusion Behavioral Neuroscience, 2016, 130, 62-74.	1.2	5
42	Spread of Amphibian Chytrid Fungus across Lowland Populations of Túngara Frogs in Panamá. PLoS ONE, 2016, 11, e0155745.	2.5	29
43	Measures of mate choice: a comment on Dougherty & Shuker. Behavioral Ecology, 2015, 26, 323-324.	2.2	8
44	The sensory ecology of adaptive landscapes. Biology Letters, 2015, 11, 20141054.	2.3	48
45	Irrationality in mate choice revealed by túngara frogs. Science, 2015, 349, 964-966.	12.6	94
46	The mystery of language evolution. Frontiers in Psychology, 2014, 5, 401.	2.1	179
47	Population and seasonal variation in response to prey calls by an eavesdropping bat. Behavioral Ecology and Sociobiology, 2014, 68, 605-615.	1.4	24
48	Ontogeny of Sexual Dimorphism in the Larynx of the Túngara Frog,Physalaemus pustulosus. Copeia, 2014, 2014, 123-129.	1.3	14
49	Risks of multimodal signaling: bat predators attend to dynamic motion in frog sexual displays. Journal of Experimental Biology, 2014, 217, 3038-3044.	1.7	45
50	Harmonic calls and indifferent females: no preference for human consonance in an anuran. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140986.	2.6	8
51	Crossmodal Comparisons of Signal Components Allow for Relative-Distance Assessment. Current Biology, 2014, 24, 1751-1755.	3.9	35
52	The mechanism of sound production in $t\tilde{A}^{\varrho}$ ngara frogs and its role in sexual selection and speciation. Current Opinion in Neurobiology, 2014, 28, 54-59.	4.2	31
53	A bond graph approach to modeling the anuran vocal production system. Journal of the Acoustical Society of America, 2013, 133, 4133-4144.	1.1	12
54	Perceptual Biases and Mate Choice. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 437-459.	8.3	219

#	Article	lF	CITATIONS
55	Do frog-eating bats perceptually bind the complex components of frog calls?. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 279-283.	1.6	7
56	When to approach novel prey cues? Social learning strategies in frog-eating bats. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132330.	2.6	45
57	An Indirect Cue of Predation Risk Counteracts Female Preference for Conspecifics in a Naturally Hybridizing Fish Xiphophorus birchmanni. PLoS ONE, 2012, 7, e34802.	2.5	30
58	Signal Perception in Frogs and Bats and the Evolution of Mating Signals. Science, 2011, 333, 751-752.	12.6	133
59	Replication in Field Biology: The Case of the Frog-Eating Bat. Science, 2011, 334, 1229-1230.	12.6	33
60	Relative comparisons of call parameters enable auditory grouping in frogs. Nature Communications, 2011, 2, 410.	12.8	35
61	Inter-signal interaction and uncertain information in anuran multimodal signals. Environmental Epigenetics, 2011, 57, 153-161.	1.8	34
62	Localization Error and Search Costs during Mate Choice in Túngara Frogs, <i>Physalaemus pustulosus</i> . Ethology, 2011, 117, 56-62.	1.1	28
63	Simulated Predation Risk Influences Female Choice in Túngara Frogs, Physalaemus pustulosus. Ethology, 2011, 117, 400-407.	1.1	29
64	The Sounds of Silence as an Alarm Cue in Túngara Frogs, Physalaemus pustulosus. Biotropica, 2011, 43, 380-385.	1.6	40
65	The relative value of call embellishment in túngara frogs. Behavioral Ecology and Sociobiology, 2011, 65, 359-367.	1.4	9
66	Female $t\tilde{A}^e$ ngara frogs elicit more complex mating signals from males. Behavioral Ecology, 2011, 22, 846-853.	2.2	34
67	Multimodal signal variation in space and time: how important is matching a signal with its signaler?. Journal of Experimental Biology, 2011, 214, 815-820.	1.7	81
68	The Brain as a Source of Selection on the Social Niche: Examples from the Psychophysics of Mate Choice in Tungara Frogs. Integrative and Comparative Biology, 2011, 51, 756-770.	2.0	14
69	Redefining animal signaling: influence versus information in communication. Biology and Philosophy, 2010, 25, 755-780.	1.4	129
70	The behavioral neuroscience of anuran social signal processing. Current Opinion in Neurobiology, 2010, 20, 754-763.	4.2	56
71	Complexity Increases Working Memory for Mating Signals. Current Biology, 2010, 20, 502-505.	3.9	63
72	Animal Behavior: The Family that Works Together Stays Together. Current Biology, 2010, 20, R403-R404.	3.9	0

#	Article	IF	CITATIONS
73	Determination of Onset of Sexual Maturation and Mating Behavior by Melanocortin Receptor 4 Polymorphisms. Current Biology, 2010, 20, 1729-1734.	3.9	116
74	Treatment with arginine vasotocin alters mating calls and decreases call attractiveness in male $t\tilde{A}^{\varrho}$ ngara frogs. General and Comparative Endocrinology, 2010, 165, 221-228.	1.8	28
75	Proximityâ€dependent Response to Variably Complex Mating Signals in Túngara Frogs (<i>Physalaemus) Tj ETQ</i>	q1 _{1.1} 0.78	4314 rgBT /C
76	Female mate choice and the potential for ornament evolution in $t\tilde{A}^{o}$ ngara frogs Physalaemus pustulosus. Environmental Epigenetics, 2010, 56, 343-357.	1.8	19
77	Sexually dimorphic sensory gating drives behavioral differences in túngara frogs. Journal of Experimental Biology, 2010, 213, 3463-3472.	1.7	32
78	Embryogenesis and laboratory maintenance of the foamâ€nesting túngara frogs, genus <i>Engystomops</i> (= <i>Physalaemus</i>). Developmental Dynamics, 2009, 238, 1444-1454.	1.8	35
79	Female and male behavioral response to advertisement calls of graded complexity in túngara frogs, Physalaemus pustulosus. Behavioral Ecology and Sociobiology, 2009, 63, 1269-1279.	1.4	58
80	Faux frogs: multimodal signalling and the value of robotics in animal behaviour. Animal Behaviour, 2008, 76, 1089-1097.	1.9	123
81	The effect of signal complexity on localization performance in bats that localize frog calls. Animal Behaviour, 2008, 76, 761-769.	1.9	76
82	Candidate neural locus for sex differences in reproductive decisions. Biology Letters, 2008, 4, 518-521.	2.3	47
83	Comparison of Morphology and Calls of Two Cryptic Species of Physalaemus (Anura: Leiuperidae). Herpetologica, 2008, 64, 290-304.	0.4	27
84	Visual sensitivity to a conspicuous male cue varies by reproductive state in <i>Physalaemus pustulosus</i> females. Journal of Experimental Biology, 2008, 211, 1203-1210.	1.7	69
85	The mixed-species chorus as public information: túngara frogs eavesdrop on a heterospecific. Behavioral Ecology, 2007, 18, 108-114.	2.2	64
86	Integration of sensory and motor processing underlying social behaviour in túngara frogs. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 641-649.	2.6	44
87	Sexual selection drives speciation in an Amazonian frog. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 399-406.	2.6	186
88	Functional coupling between substantia nigra and basal ganglia homologues in amphibians Behavioral Neuroscience, 2007, 121, 1393-1399.	1.2	15
89	Cues for Eavesdroppers: Do Frog Calls Indicate Prey Density and Quality?. American Naturalist, 2007, 169, 409-415.	2.1	85
90	Sexual Differences in the Behavioral Response of Túngara Frogs, <i>Physalaemus pustulosus</i> , to Cues Associated with Increased Predation Risk. Ethology, 2007, 113, 755-763.	1.1	56

#	Article	IF	Citations
91	Mate choice. Current Biology, 2007, 17, R313-R316.	3.9	28
92	Sensory Ecology: See Me, Hear Me. Current Biology, 2007, 17, R1019-R1021.	3.9	5
93	Sex differences in response to nonconspecific advertisement calls: receiver permissiveness in male and female túngara frogs. Animal Behaviour, 2007, 73, 955-964.	1.9	50
94	High Prevalence of Batrachochytrium dendrobatidis in Wild Populations of Lowland Leopard Frogs Rana yavapaiensis in Arizona. EcoHealth, 2007, 4, 421-427.	2.0	32
95	The role of model female quality in the mate choice copying behaviour of sailfin mollies. Biology Letters, 2006, 2, 203-205.	2.3	44
96	GEOGRAPHIC VARIATION OF GENETIC AND BEHAVIORAL TRAITS IN NORTHERN AND SOUTHERN TÊNGARA FROGS. Evolution; International Journal of Organic Evolution, 2006, 60, 1669-1679.	2.3	65
97	No evidence for female mate choice based on genetic similarity in the túngara frog Physalaemus pustulosus. Behavioral Ecology and Sociobiology, 2006, 59, 796-804.	1.4	15
98	Mate choice rules in animals. Animal Behaviour, 2006, 71, 1215-1225.	1.9	71
99	Social Transmission of Novel Foraging Behavior in Bats: Frog Calls and Their Referents. Current Biology, 2006, 16, 1201-1205.	3.9	116
100	The Vocal Sac Increases Call Rate in the $T\tilde{A}^{\varrho}$ ngara Frog Physalaemus pustulosus. Physiological and Biochemical Zoology, 2006, 79, 708-719.	1.5	50
101	Acoustic preferences and localization performance of blood-sucking flies (Corethrella Coquillett) to túngara frog calls. Behavioral Ecology, 2006, 17, 709-715.	2.2	148
102	Plasticity in female mate choice associated with changing reproductive states. Animal Behaviour, 2005, 69, 689-699.	1.9	129
103	The effects of time, space and spectrum on auditory grouping in $t\tilde{A}^{o}$ ngara frogs. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191, 1173-1183.	1.6	33
104	Character displacement in sailfin mollies, Poecilia latipinna: allozymes and behavior. Environmental Biology of Fishes, 2005, 73, 75-88.	1.0	15
105	Flexibility in assessment of prey cues: frog-eating bats and frog calls. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 841-847.	2.6	70
106	Social cues shift functional connectivity in the hypothalamus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10712-10717.	7.1	68
107	ANIMAL SIGNALS AND THE OVERLOOKED COSTS OF EFFICACY1. Evolution; International Journal of Organic Evolution, 2005, 59, 1160.	2.3	21
108	Functional Mapping of the Auditory Midbrain during Mate Call Reception. Journal of Neuroscience, 2004, 24, 11264-11272.	3.6	83

#	Article	IF	CITATIONS
109	The vocal sac as a visual cue in anuran communication: an experimental analysis using video playback. Animal Behaviour, 2004, 68, 55-58.	1.9	134
110	Population Variation of Complex Advertisement Calls in Physalaemus petersi and Comparative Laryngeal Morphology. Copeia, 2004, 2004, 624-631.	1.3	30
111	SEXUAL SELECTION IN FEMALE PERCEPTUAL SPACE: HOW FEMALE TUNGARA FROGS PERCEIVE AND RESPOND TO COMPLEX POPULATION VARIATION IN ACOUSTIC MATING SIGNALS. Evolution; International Journal of Organic Evolution, 2003, 57, 2608-2618.	2.3	96
112	Generalization in Response to Mate Recognition Signals. American Naturalist, 2003, 161, 380-394.	2.1	75
113	The Effects of Spatially Separated Call Components on Phonotaxis in Túngara Frogs: Evidence for Auditory Grouping. Brain, Behavior and Evolution, 2002, 60, 181-188.	1.7	45
114	Food, song and speciation. Nature, 2001, 409, 139-140.	27.8	8
115	Seeing red in speciation. Nature, 2001, 411, 900-901.	27.8	5
116	Evolution of Calls and Auditory Tuning in the <i>Physalaemus pustulosus</i> Species Group. Brain, Behavior and Evolution, 2001, 58, 137-151.	1.7	85
117	Visual and acoustic communication in non-human animals: a comparison. Journal of Biosciences, 2000, 25, 285-290.	1.1	35
118	Electrifying diversity. Nature, 1999, 400, 211-213.	27.8	1
119	Phylogenetic influence on mating call preferences in female túngara frogs,Physalaemus pustulosus. Animal Behaviour, 1999, 57, 945-956.	1.9	53
120	Female preferences for temporal order of call components in the túngara frog: a Bayesian analysis. Animal Behaviour, 1999, 58, 841-851.	1.9	45
121	INTERSPECIFIC RECOGNITION AND DISCRIMINATION BASED UPON OLFACTORY CUES IN NORTHERN SWORDTAILS. Evolution; International Journal of Organic Evolution, 1999, 53, 880-888.	2.3	41
122	Phylogeny of Frogs of the Physalaemus Pustulosus Species Group, With an Examination of Data Incongruence. Systematic Biology, 1998, 47, 311-335.	5.6	113
123	Patterns of evolution in human speech processing and animal communication. Behavioral and Brain Sciences, 1998, 21, 282-283.	0.7	0
124	Light Levels Influence Female Choice in Túngara Frogs: Predation Risk Assessment?. Copeia, 1997, 1997, 447.	1.3	77
125	ORIGIN AND MAINTENANCE OF A FEMALE MATING PREFERENCE. Evolution; International Journal of Organic Evolution, 1997, 51, 1244-1248.	2.3	67
126	ANIMAL COMMUNICATION AND EVOLUTION. Evolution; International Journal of Organic Evolution, 1997, 51, 1333-1337.	2.3	0

#	Article	IF	Citations
127	ALLOZYME AND ADVERTISEMENT CALL VARIATION IN THE TĀŠNGARA FROG, <i>PHYSALAEMUS PUSTULOSUS</i> . Evolution; International Journal of Organic Evolution, 1996, 50, 2435-2453.	2.3	51
128	The processing of spectral cues by the call analysis system of the túngara frog,Physalaemus pustulosus. Animal Behaviour, 1995, 49, 911-929.	1.9	85
129	Assessment and individual recognition of opponents in the pygmy swordtails Xiphophorus nigrensis and X. multilineatus. Behavioral Ecology and Sociobiology, 1995, 37, 303-310.	1.4	11
130	Large body size in the pygmy swordtail Xiphophorus pygmaeus. Biological Journal of the Linnean Society, 1995, 54, 383-395.	1.6	1
131	Species Recognition and Sexual Selection as a Unitary Problem in Animal Communication. Evolution; International Journal of Organic Evolution, 1993, 47, 647.	2.3	209
132	SPECIES RECOGNITION AND SEXUAL SELECTION AS A UNITARY PROBLEM IN ANIMAL COMMUNICATION. Evolution; International Journal of Organic Evolution, 1993, 47, 647-657.	2.3	414
133	Signal Redundancy and Receiver Permissiveness in Acoustic Mate Recognition by the Tungara Frog,Physalaemus pustulosus. American Zoologist, 1992, 32, 81-90.	0.7	71
134	Directional Patterns of Female Mate Choice and the Role of Sensory Biases. American Naturalist, 1992, 139, S4-S35.	2.1	646
135	A Genetic Polymorphism in the Swordtail Xiphophorus nigrensis: Testing the Prediction of Equal Fitnesses. American Naturalist, 1992, 139, 21-31.	2.1	195
136	Auditory Tuning and Call Frequency Predict Population-Based Mating Preferences in the Cricket Frog, Acris crepitans. American Naturalist, 1992, 139, 1370-1383.	2.1	148
137	The evolution of mating preferences and the paradox of the lek. Nature, 1991, 350, 33-38.	27.8	1,324
138	THE SENSORY BASIS OF SEXUAL SELECTION FOR COMPLEX CALLS IN THE TÊNGARA FROG, <i>PHYSALAEMUS PUSTULOSUS </i> (SEXUAL SELECTION FOR SENSORY EXPLOITATION). Evolution; International Journal of Organic Evolution, 1990, 44, 305-314.	2.3	95
139	Vocal morphology of the Physalaemus pustulosus species group (Leptodactylidae): morphological response to sexual selection for complex calls. Biological Journal of the Linnean Society, 1990, 40, 37-52.	1.6	56
140	Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature, 1990, 343, 66-67.	27.8	612
141	Sexual selection on alleles that determine body size in the swordtail Xiphophorus nigrensis. Behavioral Ecology and Sociobiology, 1990, 26, 231-237.	1.4	136
142	The Sensory Basis of Sexual Selection for Complex Calls in the Tungara Frog, Physalaemus pustulosus (Sexual Selection for Sensory Exploitation). Evolution; International Journal of Organic Evolution, 1990, 44, 305.	2.3	167
143	Ear morphology of the frog-eating bat (Trachops cirrhosus, family: Phyllostomidae): Apparent specializations for low-freqency hearing. Journal of Morphology, 1989, 199, 103-118.	1.2	36
144	Transmission Effects on Temporal Structure in the Advertisement Calls of Two Toads, <i>Bufo woodhousii</i> and <i>Bufo valliceps</i> Ethology, 1989, 80, 182-189.	1.1	32

#	Article	IF	CITATIONS
145	Energy, Calling, and Selection. American Zoologist, 1988, 28, 885-898.	0.7	205
146	Acoustical resource partitioning by two species of phyllostomid bats (Trachops cirrhosus and) Tj ETQq0 0 0 rgBT	/Overlock	10 Jf 50 702
147	Frequency modulated calls and species recognition in a neotropical frog. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1983, 150, 217-221.	1.6	52
148	Behavioral responses of the frog-eating bat, Trachops cirrhosus, to sonic frequencies. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1983, 150, 413-418.	1.6	50
149	The ability of the frog-eating bat to discriminate among novel and potentially poisonous frog species using acoustic cues. Animal Behaviour, 1983, 31, 827-833.	1.9	51
150	SEXUAL SELECTION AND COMMUNICATION IN A NEOTROPICAL FROG, <i>PHYSALAEMUS PUSTULOSUS</i> Evolution; International Journal of Organic Evolution, 1983, 37, 261-272.	2.3	115
151	Oxygen Consumption during Resting, Calling, and Nest Building in the Frog Physalaemus Pustulosus. Physiological Zoology, 1982, 55, 10-22.	1.5	151
152	Bat Predation and Sexual Advertisement in a Neotropical Anuran. American Naturalist, 1982, 119, 136-139.	2.1	331
153	The role of synchronized calling, ambient light, and ambient noise, in anti-bat-predator behavior of a treefrog. Behavioral Ecology and Sociobiology, 1982, 11, 125-131.	1.4	171
154	The costs and benefits of frog chorusing behavior. Behavioral Ecology and Sociobiology, 1981, 8, 273-278.	1.4	240
155	The Adaptive Significance of a Complex Vocal Repertoire in a Neotropical Frog. Zeitschrift FÃ $\frac{1}{4}$ r Tierpsychologie, 1981, 57, 209-214.	0.2	183
156	Can you hear/see me? Multisensory integration of signals does not always facilitate mate choice. Behavioral Ecology, 0, , .	2.2	2