
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5449890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The evolution of mating preferences and the paradox of the lek. Nature, 1991, 350, 33-38.	13.7	1,324
2	Directional Patterns of Female Mate Choice and the Role of Sensory Biases. American Naturalist, 1992, 139, S4-S35.	1.0	646
3	Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature, 1990, 343, 66-67.	13.7	612
4	SPECIES RECOGNITION AND SEXUAL SELECTION AS A UNITARY PROBLEM IN ANIMAL COMMUNICATION. Evolution; International Journal of Organic Evolution, 1993, 47, 647-657.	1.1	414
5	Bat Predation and Sexual Advertisement in a Neotropical Anuran. American Naturalist, 1982, 119, 136-139.	1.0	331
6	The costs and benefits of frog chorusing behavior. Behavioral Ecology and Sociobiology, 1981, 8, 273-278.	0.6	240
7	Perceptual Biases and Mate Choice. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 437-459.	3.8	219
8	Species Recognition and Sexual Selection as a Unitary Problem in Animal Communication. Evolution; International Journal of Organic Evolution, 1993, 47, 647.	1.1	209
9	Energy, Calling, and Selection. American Zoologist, 1988, 28, 885-898.	0.7	205
10	A Genetic Polymorphism in the Swordtail Xiphophorus nigrensis: Testing the Prediction of Equal Fitnesses. American Naturalist, 1992, 139, 21-31.	1.0	195
11	Sexual selection drives speciation in an Amazonian frog. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 399-406.	1.2	186
12	The Adaptive Significance of a Complex Vocal Repertoire in a Neotropical Frog. Zeitschrift Für Tierpsychologie, 1981, 57, 209-214.	0.2	183
13	The mystery of language evolution. Frontiers in Psychology, 2014, 5, 401.	1.1	179
14	The role of synchronized calling, ambient light, and ambient noise, in anti-bat-predator behavior of a treefrog. Behavioral Ecology and Sociobiology, 1982, 11, 125-131.	0.6	171
15	The Sensory Basis of Sexual Selection for Complex Calls in the Tungara Frog, Physalaemus pustulosus (Sexual Selection for Sensory Exploitation). Evolution; International Journal of Organic Evolution, 1990, 44, 305.	1.1	167
16	Oxygen Consumption during Resting, Calling, and Nest Building in the Frog Physalaemus Pustulosus. Physiological Zoology, 1982, 55, 10-22.	1.5	151
17	Auditory Tuning and Call Frequency Predict Population-Based Mating Preferences in the Cricket Frog, Acris crepitans. American Naturalist, 1992, 139, 1370-1383.	1.0	148
18	Acoustic preferences and localization performance of blood-sucking flies (Corethrella Coquillett) to túngara frog calls. Behavioral Ecology, 2006, 17, 709-715.	1.0	148

MICHAEL J RYAN

#	Article	IF	CITATIONS
19	Sexual selection on alleles that determine body size in the swordtail Xiphophorus nigrensis. Behavioral Ecology and Sociobiology, 1990, 26, 231-237.	0.6	136
20	The vocal sac as a visual cue in anuran communication: an experimental analysis using video playback. Animal Behaviour, 2004, 68, 55-58.	0.8	134
21	Signal Perception in Frogs and Bats and the Evolution of Mating Signals. Science, 2011, 333, 751-752.	6.0	133
22	Plasticity in female mate choice associated with changing reproductive states. Animal Behaviour, 2005, 69, 689-699.	0.8	129
23	Redefining animal signaling: influence versus information in communication. Biology and Philosophy, 2010, 25, 755-780.	0.7	129
24	Faux frogs: multimodal signalling and the value of robotics in animal behaviour. Animal Behaviour, 2008, 76, 1089-1097.	0.8	123
25	Social Transmission of Novel Foraging Behavior in Bats: Frog Calls and Their Referents. Current Biology, 2006, 16, 1201-1205.	1.8	116
26	Determination of Onset of Sexual Maturation and Mating Behavior by Melanocortin Receptor 4 Polymorphisms. Current Biology, 2010, 20, 1729-1734.	1.8	116
27	SEXUAL SELECTION AND COMMUNICATION IN A NEOTROPICAL FROG, <i>PHYSALAEMUS PUSTULOSUS</i> . Evolution; International Journal of Organic Evolution, 1983, 37, 261-272.	1.1	115
28	Phylogeny of Frogs of the Physalaemus Pustulosus Species Group, With an Examination of Data Incongruence. Systematic Biology, 1998, 47, 311-335.	2.7	113
29	SEXUAL SELECTION IN FEMALE PERCEPTUAL SPACE: HOW FEMALE TUNGARA FROGS PERCEIVE AND RESPOND TO COMPLEX POPULATION VARIATION IN ACOUSTIC MATING SIGNALS. Evolution; International Journal of Organic Evolution, 2003, 57, 2608-2618.	1.1	96
30	THE SENSORY BASIS OF SEXUAL SELECTION FOR COMPLEX CALLS IN THE TÊNGARA FROG, <i>PHYSALAEMUS PUSTULOSUS</i> (SEXUAL SELECTION FOR SENSORY EXPLOITATION). Evolution; International Journal of Organic Evolution, 1990, 44, 305-314.	1.1	95
31	Irrationality in mate choice revealed by túngara frogs. Science, 2015, 349, 964-966.	6.0	94
32	The processing of spectral cues by the call analysis system of the túngara frog,Physalaemus pustulosus. Animal Behaviour, 1995, 49, 911-929.	0.8	85
33	Evolution of Calls and Auditory Tuning in the <i>Physalaemus pustulosus</i> Species Group. Brain, Behavior and Evolution, 2001, 58, 137-151.	0.9	85
34	Cues for Eavesdroppers: Do Frog Calls Indicate Prey Density and Quality?. American Naturalist, 2007, 169, 409-415.	1.0	85
35	Functional Mapping of the Auditory Midbrain during Mate Call Reception. Journal of Neuroscience, 2004, 24, 11264-11272.	1.7	83
36	Multimodal signal variation in space and time: how important is matching a signal with its signaler?. Journal of Experimental Biology, 2011, 214, 815-820.	0.8	81

MICHAEL J RYAN

#	Article	IF	CITATIONS
37	Light Levels Influence Female Choice in Túngara Frogs: Predation Risk Assessment?. Copeia, 1997, 1997, 447.	1.4	77
38	The effect of signal complexity on localization performance in bats that localize frog calls. Animal Behaviour, 2008, 76, 761-769.	0.8	76
39	Generalization in Response to Mate Recognition Signals. American Naturalist, 2003, 161, 380-394.	1.0	75
40	Adaptive changes in sexual signalling in response to urbanization. Nature Ecology and Evolution, 2019, 3, 374-380.	3.4	72
41	Signal Redundancy and Receiver Permissiveness in Acoustic Mate Recognition by the Tungara Frog,Physalaemus pustulosus. American Zoologist, 1992, 32, 81-90.	0.7	71
42	Mate choice rules in animals. Animal Behaviour, 2006, 71, 1215-1225.	0.8	71
43	Flexibility in assessment of prey cues: frog-eating bats and frog calls. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 841-847.	1.2	70
44	Visual sensitivity to a conspicuous male cue varies by reproductive state in <i>Physalaemus pustulosus</i> females. Journal of Experimental Biology, 2008, 211, 1203-1210.	0.8	69
45	Social cues shift functional connectivity in the hypothalamus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10712-10717.	3.3	68
46	ORIGIN AND MAINTENANCE OF A FEMALE MATING PREFERENCE. Evolution; International Journal of Organic Evolution, 1997, 51, 1244-1248.	1.1	67
47	GEOGRAPHIC VARIATION OF GENETIC AND BEHAVIORAL TRAITS IN NORTHERN AND SOUTHERN TÊNGARA FROGS. Evolution; International Journal of Organic Evolution, 2006, 60, 1669-1679.	1.1	65
48	The mixed-species chorus as public information: túngara frogs eavesdrop on a heterospecific. Behavioral Ecology, 2007, 18, 108-114.	1.0	64
49	Complexity Increases Working Memory for Mating Signals. Current Biology, 2010, 20, 502-505.	1.8	63
50	Acoustical resource partitioning by two species of phyllostomid bats (Trachops cirrhosus and) Tj ETQq0 0 0 rgB	[/Oyerlock	≥ 10 Tf 50 222
51	Female and male behavioral response to advertisement calls of graded complexity in túngara frogs, Physalaemus pustulosus. Behavioral Ecology and Sociobiology, 2009, 63, 1269-1279.	0.6	58
52	Vocal morphology of the Physalaemus pustulosus species group (Leptodactylidae): morphological response to sexual selection for complex calls. Biological Journal of the Linnean Society, 1990, 40, 37-52.	0.7	56
53	Sexual Differences in the Behavioral Response of Túngara Frogs, <i>Physalaemus pustulosus</i> , to Cues Associated with Increased Predation Risk. Ethology, 2007, 113, 755-763.	0.5	56
54	The behavioral neuroscience of anuran social signal processing. Current Opinion in Neurobiology, 2010, 20, 754-763.	2.0	56

#	Article	IF	CITATIONS
55	Phylogenetic influence on mating call preferences in female túngara frogs,Physalaemus pustulosus. Animal Behaviour, 1999, 57, 945-956.	0.8	53
56	Frequency modulated calls and species recognition in a neotropical frog. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1983, 150, 217-221.	0.7	52
57	The ability of the frog-eating bat to discriminate among novel and potentially poisonous frog species using acoustic cues. Animal Behaviour, 1983, 31, 827-833.	0.8	51
58	ALLOZYME AND ADVERTISEMENT CALL VARIATION IN THE TÊNGARA FROG, <i>PHYSALAEMUS PUSTULOSUS</i> . Evolution; International Journal of Organic Evolution, 1996, 50, 2435-2453.	1.1	51
59	Behavioral responses of the frog-eating bat,Trachops cirrhosus, to sonic frequencies. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1983, 150, 413-418.	0.7	50
60	The Vocal Sac Increases Call Rate in the Túngara Frog Physalaemus pustulosus. Physiological and Biochemical Zoology, 2006, 79, 708-719.	0.6	50
61	Sex differences in response to nonconspecific advertisement calls: receiver permissiveness in male and female túngara frogs. Animal Behaviour, 2007, 73, 955-964.	0.8	50
62	The sensory ecology of adaptive landscapes. Biology Letters, 2015, 11, 20141054.	1.0	48
63	Candidate neural locus for sex differences in reproductive decisions. Biology Letters, 2008, 4, 518-521.	1.0	47
64	Female preferences for temporal order of call components in the túngara frog: a Bayesian analysis. Animal Behaviour, 1999, 58, 841-851.	0.8	45
65	The Effects of Spatially Separated Call Components on Phonotaxis in Túngara Frogs: Evidence for Auditory Grouping. Brain, Behavior and Evolution, 2002, 60, 181-188.	0.9	45
66	When to approach novel prey cues? Social learning strategies in frog-eating bats. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132330.	1.2	45
67	Risks of multimodal signaling: bat predators attend to dynamic motion in frog sexual displays. Journal of Experimental Biology, 2014, 217, 3038-3044.	0.8	45
68	The role of model female quality in the mate choice copying behaviour of sailfin mollies. Biology Letters, 2006, 2, 203-205.	1.0	44
69	Integration of sensory and motor processing underlying social behaviour in túngara frogs. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 641-649.	1.2	44
70	INTERSPECIFIC RECOGNITION AND DISCRIMINATION BASED UPON OLFACTORY CUES IN NORTHERN SWORDTAILS. Evolution; International Journal of Organic Evolution, 1999, 53, 880-888.	1.1	41
71	The Sounds of Silence as an Alarm Cue in Túngara Frogs, Physalaemus pustulosus. Biotropica, 2011, 43, 380-385.	0.8	40
72	Sexual selection and the ascent of women: Mate choice research since Darwin. Science, 2022, 375, eabi6308.	6.0	38

MICHAEL J RYAN

#	Article	IF	CITATIONS
73	Ear morphology of the frog-eating bat (Trachops cirrhosus, family: Phyllostomidae): Apparent specializations for low-freqency hearing. Journal of Morphology, 1989, 199, 103-118.	0.6	36
74	Visual and acoustic communication in non-human animals: a comparison. Journal of Biosciences, 2000, 25, 285-290.	0.5	35
75	Embryogenesis and laboratory maintenance of the foamâ€nesting túngara frogs, genus <i>Engystomops</i> (= <i>Physalaemus</i>). Developmental Dynamics, 2009, 238, 1444-1454.	0.8	35
76	Relative comparisons of call parameters enable auditory grouping in frogs. Nature Communications, 2011, 2, 410.	5.8	35
77	Crossmodal Comparisons of Signal Components Allow for Relative-Distance Assessment. Current Biology, 2014, 24, 1751-1755.	1.8	35
78	Inter-signal interaction and uncertain information in anuran multimodal signals. Environmental Epigenetics, 2011, 57, 153-161.	0.9	34
79	Female túngara frogs elicit more complex mating signals from males. Behavioral Ecology, 2011, 22, 846-853.	1.0	34
80	Major histocompatibility complex selection dynamics in pathogen-infected túngara frog () Tj ETQq0 0 0 rgBT /0	Dverlock 1 1.0	0 Tf 50 462 T
81	The effects of time, space and spectrum on auditory grouping in túngara frogs. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191, 1173-1183.	0.7	33
82	Replication in Field Biology: The Case of the Frog-Eating Bat. Science, 2011, 334, 1229-1230.	6.0	33
83	High Prevalence of Batrachochytrium dendrobatidis in Wild Populations of Lowland Leopard Frogs Rana yavapaiensis in Arizona. EcoHealth, 2007, 4, 421-427.	0.9	32
84	Transmission Effects on Temporal Structure in the Advertisement Calls of Two Toads, <i>Bufo woodhousii</i> and <i>Bufo valliceps</i> . Ethology, 1989, 80, 182-189.	0.5	32
85	Sexually dimorphic sensory gating drives behavioral differences in túngara frogs. Journal of Experimental Biology, 2010, 213, 3463-3472.	0.8	32
86	The mechanism of sound production in túngara frogs and its role in sexual selection and speciation. Current Opinion in Neurobiology, 2014, 28, 54-59.	2.0	31
87	Population Variation of Complex Advertisement Calls in Physalaemus petersi and Comparative Laryngeal Morphology. Copeia, 2004, 2004, 624-631.	1.4	30
88	An Indirect Cue of Predation Risk Counteracts Female Preference for Conspecifics in a Naturally Hybridizing Fish Xiphophorus birchmanni. PLoS ONE, 2012, 7, e34802.	1.1	30
89	Interactions between complex multisensory signal components result in unexpected mate choice responses. Animal Behaviour, 2017, 134, 239-247.	0.8	30
90	Simulated Predation Risk Influences Female Choice in Túngara Frogs, Physalaemus pustulosus. Ethology, 2011, 117, 400-407.	0.5	29

#	Article	IF	CITATIONS
91	Nineteen Years of Consistently Positive and Strong Female Mate Preferences despite Individual Variation. American Naturalist, 2019, 194, 125-134.	1.0	29
92	Spread of Amphibian Chytrid Fungus across Lowland Populations of Túngara Frogs in Panamá. PLoS ONE, 2016, 11, e0155745.	1.1	29
93	Mate choice. Current Biology, 2007, 17, R313-R316.	1.8	28
94	Treatment with arginine vasotocin alters mating calls and decreases call attractiveness in male túngara frogs. General and Comparative Endocrinology, 2010, 165, 221-228.	0.8	28
95	Localization Error and Search Costs during Mate Choice in Túngara Frogs, <i>Physalaemus pustulosus</i> . Ethology, 2011, 117, 56-62.	0.5	28
96	Comparison of Morphology and Calls of Two Cryptic Species of Physalaemus (Anura: Leiuperidae). Herpetologica, 2008, 64, 290-304.	0.2	27
97	â€~Crazy love': nonlinearity and irrationality in mate choice. Animal Behaviour, 2019, 147, 189-198.	0.8	26
98	Population and seasonal variation in response to prey calls by an eavesdropping bat. Behavioral Ecology and Sociobiology, 2014, 68, 605-615.	0.6	24
99	ANIMAL SIGNALS AND THE OVERLOOKED COSTS OF EFFICACY1. Evolution; International Journal of Organic Evolution, 2005, 59, 1160.	1.1	21
100	Darwin, sexual selection, and the brain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
101	Female mate choice and the potential for ornament evolution in túngara frogs Physalaemus pustulosus. Environmental Epigenetics, 2010, 56, 343-357.	0.9	19
102	Proximityâ€dependent Response to Variably Complex Mating Signals in Túngara Frogs (<i>Physalaemus) Tj ETQq</i>	0.0.0 rgBT 0.5	Qverlock] 18
103	Character displacement in sailfin mollies, Poecilia latipinna: allozymes and behavior. Environmental Biology of Fishes, 2005, 73, 75-88.	0.4	15
104	No evidence for female mate choice based on genetic similarity in the túngara frog Physalaemus pustulosus. Behavioral Ecology and Sociobiology, 2006, 59, 796-804.	0.6	15
105	Functional coupling between substantia nigra and basal ganglia homologues in amphibians Behavioral Neuroscience, 2007, 121, 1393-1399.	0.6	15
106	Receiver discriminability drives the evolution of complex sexual signals by sexual selection. Evolution; International Journal of Organic Evolution, 2016, 70, 922-927.	1.1	15
107	The Brain as a Source of Selection on the Social Niche: Examples from the Psychophysics of Mate Choice in Tungara Frogs. Integrative and Comparative Biology, 2011, 51, 756-770.	0.9	14
108	Ontogeny of Sexual Dimorphism in the Larynx of the Túngara Frog,Physalaemus pustulosus. Copeia, 2014, 2014, 123-129.	1.4	14

#	Article	IF	CITATIONS
109	Environmental conditions limit attractiveness of a complex sexual signal in the túngara frog. Nature Communications, 2017, 8, 1891.	5.8	14
110	Multimodal stimuli regulate reproductive behavior and physiology in male túngara frogs. Hormones and Behavior, 2019, 115, 104546.	1.0	14
111	Sensory ecology of the frog-eating bat, <i>Trachops cirrhosus</i> , from DNA metabarcoding and behavior. Behavioral Ecology, 2020, 31, 1420-1428.	1.0	14
112	A bond graph approach to modeling the anuran vocal production system. Journal of the Acoustical Society of America, 2013, 133, 4133-4144.	0.5	12
113	Environmental heterogeneity alters mate choice behavior for multimodal signals. Behavioral Ecology and Sociobiology, 2019, 73, 1.	0.6	12
114	Cognitive constraints on optimal foraging in frog-eating bats. Animal Behaviour, 2018, 143, 43-50.	0.8	11
115	Reproductive State Modulates Retinal Sensitivity to Light in Female Túngara Frogs. Frontiers in Behavioral Neuroscience, 2019, 13, 293.	1.0	11
116	Assessment and individual recognition of opponents in the pygmy swordtails Xiphophorus nigrensis and X. multilineatus. Behavioral Ecology and Sociobiology, 1995, 37, 303-310.	0.6	11
117	The relative value of call embellishment in túngara frogs. Behavioral Ecology and Sociobiology, 2011, 65, 359-367.	0.6	9
118	Perceived Synchrony of Frog Multimodal Signal Components IsÂInfluenced by Content and Order. Integrative and Comparative Biology, 2017, 57, 902-909.	0.9	9
119	Vasotocin induces sexually dimorphic effects on acoustically-guided behavior in a tropical frog. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 265-273.	0.7	9
120	A laryngeal fibrous mass impacts the acoustics and attractiveness of a multicomponent call in túngara frogs (<i>Physalaemus pustulosus</i>). Bioacoustics, 2018, 27, 231-243.	0.7	9
121	Effects of information load on response times in frogs and bats: mate choice vs. prey choice. Behavioral Ecology and Sociobiology, 2019, 73, 1.	0.6	9
122	Understanding the Role of Incentive Salience in Sexual Decision-Making. Integrative and Comparative Biology, 2020, 60, 712-721.	0.9	9
123	Food, song and speciation. Nature, 2001, 409, 139-140.	13.7	8
124	Harmonic calls and indifferent females: no preference for human consonance in an anuran. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140986.	1.2	8
125	Measures of mate choice: a comment on Dougherty & amp; Shuker. Behavioral Ecology, 2015, 26, 323-324.	1.0	8
126	Rationality in decision-making in the fringe-lipped bat, Trachops cirrhosus. Behavioral Ecology and Sociobiology, 2017, 71, 1.	0.6	8

#	Article	IF	CITATIONS
127	Do frog-eating bats perceptually bind the complex components of frog calls?. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 279-283.	0.7	7
128	Acoustic communication in the Bocon toadfish (Amphichthys cryptocentrus). Environmental Biology of Fishes, 2018, 101, 1175-1193.	0.4	7
129	Epigenomic changes in the túngara frog (Physalaemus pustulosus): possible effects of introduced fungal pathogen and urbanization. Evolutionary Ecology, 2019, 33, 671-686.	0.5	7
130	Behavioral and neural auditory thresholds in a frog. Environmental Epigenetics, 2019, 65, 333-341.	0.9	7
131	Multisensory modalities increase working memory for mating signals in a treefrog. Journal of Animal Ecology, 2021, 90, 1455-1465.	1.3	7
132	Responses of male cricket frogs (<i>Acris crepitans</i>) to attenuated and degraded advertisement calls. Ethology, 2017, 123, 357-364.	0.5	6
133	Modelling the production of complex calls in the túngara frog (<i>Physalaemus pustulosus</i>). Bioacoustics, 2019, 28, 345-363.	0.7	6
134	Covariation among multimodal components in the courtship display of the túngara frog. Journal of Experimental Biology, 2021, 224, .	0.8	6
135	Seeing red in speciation. Nature, 2001, 411, 900-901.	13.7	5
136	Sensory Ecology: See Me, Hear Me. Current Biology, 2007, 17, R1019-R1021.	1.8	5
137	Floating frogs sound larger: environmental constraints on signal production drives call frequency changes. Die Naturwissenschaften, 2020, 107, 41.	0.6	5
138	Female túngara frogs do not experience the continuity illusion Behavioral Neuroscience, 2016, 130, 62-74.	0.6	5
139	Long-term memory in frog-eating bats. Current Biology, 2022, 32, R557-R558.	1.8	4
140	Cross-modal facilitation of auditory discrimination in a frog. Biology Letters, 2022, 18, .	1.0	4
141	Schema vs. primitive perceptual grouping: the relative weighting of sequential vs. spatial cues during an auditory grouping task in frogs. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 175-182.	0.7	3
142	Transitive foraging behaviour in frog-eating bats. Animal Behaviour, 2019, 154, 47-55.	0.8	3
143	Does sexual dimorphism vary by population? Laryngeal and ear anatomy in cricket frogs. Environmental Epigenetics, 2019, 65, 343-352.	0.9	2
144	Flexible habitat choice by aphids exposed to multiple cues reflecting present and future benefits. Behavioral Ecology, 2021, 32, 286-296.	1.0	2

#	ARTICLE	IF	CITATIONS
145	Tuned in to communication sounds: Neuronal sensitivity in the túngara frog midbrain to frequency modulated signals. PLoS ONE, 2022, 17, e0268383.	1.1	2
146	Can you hear/see me? Multisensory integration of signals does not always facilitate mate choice. Behavioral Ecology, 0, , .	1.0	2
147	Electrifying diversity. Nature, 1999, 400, 211-213.	13.7	1
148	Perspectives regarding future experiments on categorical perception: a comment on Green et al Behavioral Ecology, 2020, 31, 868-868.	1.0	1
149	Arginine vasotocin affects vocal behavior but not selective responses to conspecific calls in male túngara frogs. Hormones and Behavior, 2021, 128, 104891.	1.0	1
150	Estrogenic Modulation of Retinal Sensitivity in Reproductive Female Túngara Frogs. Integrative and Comparative Biology, 2021, 61, 231-239.	0.9	1
151	Large body size in the pygmy swordtail Xiphophorus pygmaeus. Biological Journal of the Linnean Society, 1995, 54, 383-395.	0.7	1
152	Local competitive environment and male condition influence within-bout calling patterns in túngara frogs. Bioacoustics, 2023, 32, 121-142.	0.7	1
153	ANIMAL COMMUNICATION AND EVOLUTION. Evolution; International Journal of Organic Evolution, 1997, 51, 1333-1337.	1.1	0
154	Patterns of evolution in human speech processing and animal communication. Behavioral and Brain Sciences, 1998, 21, 282-283.	0.4	0
155	Animal Behavior: The Family that Works Together Stays Together. Current Biology, 2010, 20, R403-R404.	1.8	0
156	The Use of Evoked Vocal Responses to Detect Cryptic, Low-Density Frogs in the Field. Journal of Herpetology, 2021, 55, .	0.2	0