Peter A Lund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5449844/publications.pdf

Version: 2024-02-01

76 papers 3,335 citations

30 h-index 56 g-index

84 all docs

84 docs citations

84 times ranked 3595 citing authors

#	Article	IF	CITATIONS
1	Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiology Reviews, 2014, 38, 1091-1125.	3.9	375
2	The Essential Genome of <i>Escherichia coli</i> K-12. MBio, 2018, 9, .	1.8	242
3	Binding of a chaperonin to the folding intermediates of lactate dehydrogenase. Biochemistry, 1991, 30, 9195-9200.	1.2	177
4	Microbial molecular chaperones. Advances in Microbial Physiology, 2001, 44, 93-140.	1.0	169
5	The Antibacterial Activity of Acetic Acid against Biofilm-Producing Pathogens of Relevance to Burns Patients. PLoS ONE, 2015, 10, e0136190.	1.1	142
6	Multiple chaperonins in bacteria – why so many?. FEMS Microbiology Reviews, 2009, 33, 785-800.	3.9	141
7	Expression of antifreeze proteins in transgenic plants. Plant Molecular Biology, 1991, 17, 1013-1021.	2.0	123
8	Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biological Reviews, 2013, 88, 955-987.	4.7	107
9	A <i>Mycobacterium tuberculosis</i> Mutant Lacking the <i>groEL</i> Homologue <i>cpn60.1</i> Is Viable but Fails To Induce an Inflammatory Response in Animal Models of Infection. Infection and Immunity, 2008, 76, 1535-1546.	1.0	100
10	Characterization of a tightly controlled promoter of the halophilic archaeon <i>Haloferax volcanii</i> and its use in the analysis of the essential <i>cct1</i> gene. Molecular Microbiology, 2007, 66, 1092-1106.	1.2	94
11	Understanding How Microorganisms Respond to Acid pH Is Central to Their Control and Successful Exploitation. Frontiers in Microbiology, 2020, 11, 556140.	1.5	90
12	The Escherichia coli small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous proteins denatured in vivo during extreme heat shock. Microbiology (United Kingdom), 2002, 148, 1757-1765.	0.7	90
13	Role of the merT and merP gene products of transposon Tn501 in the induction and expression of resistance to mercuric ions. Gene, 1987, 52, 207-214.	1.0	88
14	A systems biology approach sheds new light on Escherichia coli acid resistance. Nucleic Acids Research, 2011, 39, 7512-7528.	6.5	86
15	A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1999, 293, 667-684.	2.0	72
16	Novel Aspects of the Acid Response Network of E. coli K-12 Are Revealed by a Study of Transcriptional Dynamics. Journal of Molecular Biology, 2010, 401, 726-742.	2.0	70
17	Regulation of transcription in Escherichia coli from the mer and merR promoters in the transposon Tn501. Journal of Molecular Biology, 1989, 205, 343-353.	2.0	66
18	The Escherichia coli Acid Stress Response and Its Significance for Pathogenesis. Advances in Applied Microbiology, 2015, 92, 49-88.	1.3	65

#	Article	IF	Citations
19	In vivo activities of GroEL minichaperones. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9861-9866.	3.3	64
20	Human Protein Disulfide Isomerase Functionally Complements a dsbA Mutation and Enhances the Yield of Pectate Lyase C in Escherichia coli. Journal of Biological Chemistry, 1995, 270, 28210-28215.	1.6	53
21	Isolation and Characterisation of Mutants of GroEL that are Fully Functional as Single Rings. Journal of Molecular Biology, 2003, 332, 715-728.	2.0	52
22	Co-expression of human protein disulphide isomerase (PDI) can increase the yield of an antibody Fab′ fragment expressed inEscherichia coli. FEBS Letters, 1996, 380, 194-197.	1.3	48
23	Characterization of mutations in the <scp>PAS</scp> domain of the <scp>EvgS</scp> sensor kinase selected by laboratory evolution for acid resistance in <scp><i>E</i></scp> <i>scherichia coli</i>	1.2	48
24	Bacterial Chitinase Is Modified and Secreted in Transgenic Tobacco. Plant Physiology, 1989, 91, 130-135.	2.3	43
25	Mutations indsbAanddsbB, but notdsbC, lead to an enhanced sensitivity ofEscherichia colito Hg2+and Cd2+. FEMS Microbiology Letters, 1999, 174, 179-184.	0.7	43
26	Multiple moonlighting functions of mycobacterial molecular chaperones. Tuberculosis, 2010, 90, 119-124.	0.8	42
27	Synergistic Impacts of Organic Acids and pH on Growth of Pseudomonas aeruginosa: A Comparison of Parametric and Bayesian Non-parametric Methods to Model Growth. Frontiers in Microbiology, 2018, 9, 3196.	1.5	42
28	RcsB Is Required for Inducible Acid Resistance in Escherichia coli and Acts at gadE-Dependent and -Independent Promoters. Journal of Bacteriology, 2011, 193, 3653-3656.	1.0	35
29	The hrcA and hspR regulons of Campylobacter jejuni. Microbiology (United Kingdom), 2010, 156, 158-166.	0.7	32
30	Identification of Elements That Dictate the Specificity of Mitochondrial Hsp60 for Its Co-Chaperonin. PLoS ONE, 2012, 7, e50318.	1.1	32
31	A plant signal sequence enhances the secretion of bacterial ChiA in transgenic tobacco. Plant Molecular Biology, 1992, 18, 47-53.	2.0	31
32	All three chaperonin genes in the archaeon Haloferax volcanii are individually dispensable. Molecular Microbiology, 2006, 61, 1583-1597.	1.2	31
33	Structural and Functional Analysis of the Escherichia coli Acid-Sensing Histidine Kinase EvgS. Journal of Bacteriology, 2017, 199, .	1.0	31
34	Homologous Recombination in Plant Cells after Agrobacterium-Mediated Transformation. Plant Cell, 1990, 2, 415.	3.1	29
35	Rhizobium leguminosarum chaperonin 60.3, but not chaperonin 60.1, induces cytokine production by human monocytes: activity is dependent on interaction with cell surface CD14. Cell Stress and Chaperones, 2002, 7, 130.	1.2	26
36	Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties. Biochemical and Biophysical Research Communications, 2004, 324, 822-828.	1.0	25

#	Article	IF	Citations
37	Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress and Chaperones, 2007, 12, 123.	1.2	25
38	Up-promoter mutations in the positively-regulatedmerpromoter of TnSOI. Nucleic Acids Research, 1989, 17, 5517-5528.	6.5	24
39	Characterisation of a GroEL Single-Ring Mutant that Supports Growth of Escherichia coli and Has GroES-Dependent ATPase Activity. Journal of Molecular Biology, 2010, 396, 1271-1283.	2.0	24
40	Differential expression of the multiple chaperonins of Mycobacterium smegmatis. FEMS Microbiology Letters, 2010, 310, 24-31.	0.7	23
41	The unusual mycobacterial chaperonins: evidence for <i>in vivo</i> oligomerization and specialization of function. Molecular Microbiology, 2012, 85, 934-944.	1.2	23
42	Archaeal chaperonins. Frontiers in Bioscience - Landmark, 2009, Volume, 1304.	3.0	21
43	Chaperone Activity of a Chimeric GroEL Protein That Can Exist in a Single or Double Ring Form. Journal of Biological Chemistry, 1999, 274, 20351-20357.	1.6	17
44	Characterisation of mutations in GroES that allow GroEL to function as a single ring. FEBS Letters, 2009, 583, 2365-2371.	1.3	17
45	The Signaling Molecule Indole Inhibits Induction of the AR2 Acid Resistance System in Escherichia coli. Frontiers in Microbiology, 2020, 11, 474.	1.5	16
46	Properties of the chaperonin complex from the halophilic archaeonHaloferax volcanii. FEBS Letters, 2002, 532, 309-312.	1.3	14
47	Reconstructing promoter activity from Lux bioluminescent reporters. PLoS Computational Biology, 2017, 13, e1005731.	1.5	14
48	Intrinsic Fluorescence Studies of the Chaperonin GroEL Containing Single Tyr → Trp Replacements Reveal Ligand-induced Conformational Changes. Journal of Biological Chemistry, 1996, 271, 31989-31995.	1.6	11
49	A Bayesian non-parametric mixed-effects model of microbial growth curves. PLoS Computational Biology, 2020, 16, e1008366.	1.5	11
50	The chaperonin cycle and protein folding. BioEssays, 1994, 16, 229-231.	1.2	10
51	Insights into chaperonin function from studies on archaeal thermosomes. Biochemical Society Transactions, 2011, 39, 94-98.	1.6	10
52	Replacement of GroEL in Escherichia coli by the Group II Chaperonin from the Archaeon Methanococcus maripaludis. Journal of Bacteriology, 2016, 198, 2692-2700.	1.0	9
53	Mutagenic studies on human protein disulfide isomerase by complementation ofEscherichia coli dsbAanddsbCmutants. FEBS Letters, 2000, 466, 317-322.	1.3	8
54	Distinct mechanisms regulate expression of the two major groEL homologues in Rhizobium leguminosarum. Archives of Microbiology, 2006, 187, 1-14.	1.0	8

#	Article	IF	CITATIONS
55	Identification of the monocyte activating motif in Mycobacterium tuberculosis chaperonin 60.1. Tuberculosis, 2013, 93, 442-447.	0.8	8
56	An arginine residue (arg101), which is conserved in many GroEL homologues, is required for interactions between the two heptameric rings 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1998, 282, 789-800.	2.0	6
57	Mapping the Transcriptional and Fitness Landscapes of a Pathogenic E. coli Strain: The Effects of Organic Acid Stress under Aerobic and Anaerobic Conditions. Genes, 2021, 12, 53.	1.0	5
58	Trp203 mutation in GroEL promotes a self-association reaction: a hydrodynamic study. European Biophysics Journal, 2000, 29, 420-428.	1.2	4
59	The Chaperone Function: Meanings and Myths. Novartis Foundation Symposium, 2008, 291, 23-44.	1.2	4
60	Kinetic and Energetic Aspects of Chaperonin Function. , 1996, , 167-212.		4
61	Bacterial Stress Responses. Heat Shock Proteins, 2013, , 3-22.	0.2	3
62	Minichaperone (GroEL191-345) mediated folding of MalZ proceeds by binding and release of native and functional intermediates. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 941-951.	1.1	3
63	11 DNA Sequencing. Methods in Microbiology, 1988, , 253-301.	0.4	2
64	Chaperonin Abundance Enhances Bacterial Fitness. Frontiers in Molecular Biosciences, 2021, 8, 669996.	1.6	2
65	GroEL protects the sarcoplasmic reticulum Ca -dependent ATPase from inactivation in vitro. IUBMB Life, 1999, 47, 631-638.	1.5	1
66	Use of Transposon Directed Insertion-Site Sequencing to Probe the Antibacterial Mechanism of a Model Honey on E. coli K-12. Frontiers in Microbiology, 2021, 12, 803307.	1.5	1
67	Good heavens!. Nature, 1992, 355, 197-197.	13.7	0
68	Homologous chaperonin genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress and Chaperones, 2005, preprint, $1. $	1,2	0
69	The Roles of GroES as a Co-Chaperone for GroEL. , 2007, , 75-87.		О
70	Distinct Modes of Regulation in Two of the Three Chaperonin Operons of Rhizobium leguminosarum. Current Plant Science and Biotechnology in Agriculture, 1998, , 158-158.	0.0	0
71	The Roles of Molecular Chaperones in the Bacterial Cell. , 1998, , 229-243.		0
72	A Bayesian non-parametric mixed-effects model of microbial growth curves. , 2020, 16, e1008366.		0

#	Article	IF	CITATIONS
73	A Bayesian non-parametric mixed-effects model of microbial growth curves. , 2020, 16, e1008366.		0
74	A Bayesian non-parametric mixed-effects model of microbial growth curves. , 2020, 16, e1008366.		0
75	A Bayesian non-parametric mixed-effects model of microbial growth curves. , 2020, 16, e1008366.		O
76	Editorial: Microbial Stress: From Model Organisms to Applications in Food, Microbiotechnology and Medicine. Frontiers in Microbiology, 0, 13 , .	1.5	0