Liang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5449487/publications.pdf Version: 2024-02-01

LIANC WANC

#	Article	IF	CITATIONS
1	Economical Pt-Free Catalysts for Counter Electrodes of Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2012, 134, 3419-3428.	6.6	798
2	Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Physical Chemistry Chemical Physics, 2011, 13, 19298.	1.3	306
3	High-performance phosphide/carbon counter electrode for both iodide and organic redox couples in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 11121.	6.7	129
4	Non-Pt counter electrode catalysts using tantalum oxide for low-cost dye-sensitized solar cells. Electrochemistry Communications, 2012, 24, 69-73.	2.3	114
5	A dual functional additive for the HTM layer in perovskite solar cells. Chemical Communications, 2014, 50, 5020.	2.2	110
6	A new type of low-cost counter electrode catalyst based on platinum nanoparticles loaded onto silicon carbide (Pt/SiC) for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 4286.	1.3	90
7	An iodine-free electrolyte based on ionic liquid polymers for all-solid-state dye-sensitized solar cells. Chemical Communications, 2011, 47, 2700.	2.2	88
8	Notable catalytic activity of oxygen-vacancy-rich WO2.72 nanorod bundles as counter electrodes for dye-sensitized solar cells. Chemical Communications, 2013, 49, 7626.	2.2	76
9	Printable electrolytes for highly efficient quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2013, 91, 302-306.	2.6	73
10	Composite catalyst of rosin carbon/Fe3O4: highly efficient counter electrode for dye-sensitized solar cells. Chemical Communications, 2014, 50, 1701.	2.2	72
11	Response enhancement mechanism of NO2 gas sensing in ultrathin pentacene field-effect transistors. Organic Electronics, 2015, 24, 96-100.	1.4	66
12	Economical hafnium oxygen nitride binary/ternary nanocomposite counter electrode catalysts for high-efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 1341-1348.	5.2	65
13	In Situ Synthesized Economical Tungsten Dioxide Imbedded in Mesoporous Carbon for Dye-Sensitized Solar Cells As Counter Electrode Catalyst. Journal of Physical Chemistry C, 2011, 115, 22598-22602.	1.5	64
14	Highly catalytic counter electrodes for organic redox couple of thiolate/disulfide in dye-sensitized solar cells. Applied Physics Letters, 2011, 98, .	1.5	58
15	Interlaced W ₁₈ O ₄₉ nanofibers as a superior catalyst for the counter electrode of highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 4347-4354.	5.2	58
16	Excellent Moisture Stability and Efficiency of Inverted All-Inorganic CsPbIBr ₂ Perovskite Solar Cells through Molecule Interface Engineering. ACS Applied Materials & Interfaces, 2020, 12, 13931-13940.	4.0	52
17	Iron oxide nanostructures as highly efficient heterogeneous catalysts for mesoscopic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 15279-15283.	5.2	45
18	SnSâ€Quantum Dot Solar Cells Using Novel TiC Counter Electrode and Organic Redox Couples. Chemistry - A European Journal, 2012, 18, 7862-7868.	1.7	39

LIANG WANG

#	Article	IF	CITATIONS
19	Highly Stable Gel-State Dye-Sensitized Solar Cells Based on High Soluble Polyvinyl Acetate. ACS Sustainable Chemistry and Engineering, 2013, 1, 205-208.	3.2	39
20	Highly efficient catalysts for Co(ii/iii) redox couples in dye-sensitized solar cells. Chemical Communications, 2012, 48, 2600.	2.2	38
21	Novel Lead-Free Material Cs ₂ Ptl ₆ with Narrow Bandgap and Ultra-Stability for Its Photovoltaic Application. ACS Applied Materials & Interfaces, 2020, 12, 44700-44709.	4.0	35
22	Suppression of lodide Ion Migration via Sb ₂ S ₃ Interfacial Modification for Stable Inorganic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 12867-12873.	4.0	32
23	The sulfur-rich small molecule boosts the efficiency of carbon-based CsPbi2Br perovskite solar cells to approaching 14%. Solar Energy, 2021, 216, 351-357.	2.9	30
24	Printable fabrication of Pt-and-ITO free counter electrodes for completely flexible quasi-solid dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 3932.	5.2	28
25	Surface Management for Carbonâ€Based CsPbl ₂ Br Perovskite Solar Cell with 14% Power Conversion Efficiency. Solar Rrl, 2021, 5, 2100404.	3.1	24
26	A novel counter electrode based on mesoporous carbon for dye-sensitized solar cell. Materials Chemistry and Physics, 2010, 123, 690-694.	2.0	23
27	Mono-ion transport electrolyte based on ionic liquid polymer for all-solid-state dye-sensitized solar cells. Solar Energy, 2012, 86, 1546-1551.	2.9	21
28	From marine plants to photovoltaic devices. Energy and Environmental Science, 2014, 7, 343-346.	15.6	21
29	Cs-Incorporated AgBil ₄ Rudorffite for Efficient and Stable Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 9980-9987.	3.2	20
30	Over 23% power conversion efficiency of planar perovskite solar cells via bulk heterojunction design. Chemical Engineering Journal, 2021, 426, 131838.	6.6	18
31	A double perovskite participation for promoting stability and performance of Carbon-Based CsPbI2Br perovskite solar cells. Journal of Colloid and Interface Science, 2022, 606, 800-807.	5.0	16
32	First application of bis(oxalate)borate ionic liquids (ILBOBs) in high-performance dye-sensitized solar cells. RSC Advances, 2013, 3, 12975.	1.7	11
33	Indium Zinc Oxide Electron Transport Layer for High-Performance Planar Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 28491-28496.	1.5	10
34	High-performance carbon-based CsPbI2Br perovskite solar cells via small molecule modification. Journal of Power Sources, 2021, 516, 230676.	4.0	9
35	Carrier Transport Layerâ€Free Perovskite Solar Cells. ChemSusChem, 2021, 14, 4776-4782.	3.6	8
36	High electrocatalytic activity of W ₁₈ O ₄₉ nanowires for cobalt complex and ferrocenium redox mediators. RSC Advances, 2014, 4, 42190-42196.	1.7	7

LIANG WANG

#	ARTICLE	IF	CITATIONS
37	Bifunctional Organic Disulfide for High-Efficiency and High-Stability Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 9724-9731.	2.5	7
38	Economical, green and dual-function pyridyl iodides as electrolyte components for high efficiency dye-sensitized solar cells. Chemical Communications, 2013, 49, 9003.	2.2	4
39	Improvement of the Photovoltaic Performance of Dye-Sensitized Solar Cells by Using Mesoporous Carbon in Polyvinylidene Fluoride/1-Methyl-3-Hexylimidazolium Iodide Gel Electrolyte. Advanced Materials Research, 2010, 156-157, 1078-1081.	0.3	2
40	Enhancing the Performance of Dye-Sensitized Solar Cells by Incorporating Mesoporous Carbon in Polymer Gel Electrolyte. Materials Science Forum, 2011, 685, 44-47.	0.3	0
41	Celation of Ionic Liquid-Based Electrolyte with Ordered Mesoporous Silica Particles for Quasi-Solid-State Dye-Sensitized Solar Cells. Materials Science Forum, 0, 685, 55-59.	0.3	0