Wei Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5449402/publications.pdf

Version: 2024-02-01

567281 526287 1,335 29 15 27 citations h-index g-index papers 29 29 29 757 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Phase field fracture predictions of microscopic bridging behaviour of composite materials. Composite Structures, 2022, 286, 115242.	5.8	22
2	Modelling pre-fatigue, low-velocity impact and post-impact fatigue behaviours of composite helicopter tail structures under multipoint coordinated loading spectrum. Thin-Walled Structures, 2022, 176, 109349.	5. 3	4
3	A crystal plasticity phenomenological model to capture the non-linear shear response of carbon fibre reinforced composites. International Journal of Lightweight Materials and Manufacture, 2021, 4, 99-109.	2.1	5
4	Phase field predictions of microscopic fracture and R-curve behaviour of fibre-reinforced composites. Composites Science and Technology, 2021, 202, 108539.	7.8	55
5	Catalyst-Mediated Enhancement of Carbon Nanotube Textiles by Laser Irradiation: Nanoparticle Sweating and Bundle Alignment. Catalysts, 2021, 11, 368.	3.5	5
6	The mechanical and electrochemical properties of polyaniline-coated carbon nanotube mat. Journal of Energy Storage, 2021, 41, 102757.	8.1	8
7	Progressive damage modelling and fatigue life prediction of Plain-weave composite laminates with Low-velocity impact damage. Composite Structures, 2021, 273, 114262.	5.8	13
8	The Nail Penetration Behaviour of Carbon Nanotube Composite Electrodes for Energy Storage. Frontiers in Materials, 2021, 8, .	2.4	0
9	High-performance flexible strain sensors based on biaxially stretched conductive polymer composites with carbon nanotubes immobilized on reduced graphene oxide. Composites Part A: Applied Science and Manufacturing, 2021, 151, 106665.	7.6	70
10	A physically-based constitutive model for the shear-dominated response and strain rate effect of carbon fibre reinforced composites. Composites Part B: Engineering, 2020, 193, 108032.	12.0	11
11	Compressive failure of woven fabric reinforced thermoplastic composites with an open-hole: An experimental and numerical study. Composite Structures, 2019, 213, 108-117.	5.8	37
12	The mechanical and electrical properties of direct-spun carbon nanotube mat-epoxy composites. Carbon, 2019, 150, 489-504.	10.3	32
13	Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact. Composite Structures, 2019, 207, 727-739.	5. 8	139
14	A multiscale methodology quantifying the sintering temperatureâ€dependent mechanical properties of oxide matrix composites. Journal of the American Ceramic Society, 2018, 101, 3168-3180.	3.8	13
15	Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates. Composites Part B: Engineering, 2018, 136, 101-118.	12.0	137
16	Predicting the Compression-After-Impact (CAI) strength of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates. Composites Part A: Applied Science and Manufacturing, 2018, 105, 189-202.	7 . 6	86
17	Cohesive zone modeling of the autoclave pressure effect on the delamination behavior of composite laminates. Journal of Reinforced Plastics and Composites, 2018, 37, 1468-1480.	3.1	6
18	High-fidelity characterization on anisotropic thermal conductivity of carbon nanotube sheets and on their effects of thermal enhancement of nanocomposites. Nanotechnology, 2018, 29, 365708.	2.6	14

#	Article	IF	CITATION
19	Virtual Testing of Composite Structures: Progress and Challenges in Predicting Damage, Residual Strength and Crashworthiness., 2017,, 699-743.		1
20	Comment on "A tensorial based progressive damage model for fibre reinforced polymers― Composite Structures, 2017, 176, 877-882.	5.8	19
21	Optimization of curing process for polymer-matrix composites based on orthogonal experimental method. Fibers and Polymers, 2017, 18, 148-154.	2.1	14
22	Effect of autoclave pressure on interfacial properties at micro- and macro- level in polymer-matrix composite laminates. Fibers and Polymers, 2017, 18, 1614-1622.	2.1	7
23	Void content and interfacial properties of composite laminates under different autoclave cure pressure. Composite Interfaces, 2017, 24, 529-540.	2.3	29
24	Predicting Impact Damage, Residual Strength and Crashworthiness of Composite Structures. SAE International Journal of Materials and Manufacturing, 2016, 9, 718-728.	0.3	9
25	The role of material characterisation in the crush modelling of thermoplastic composite structures. Composite Structures, 2016, 153, 914-927.	5.8	47
26	Modelling the crush behaviour of thermoplastic composites. Composites Science and Technology, 2016, 134, 57-71.	7.8	83
27	Modelling the nonlinear behaviour and fracture process of AS4/PEKK thermoplastic composite under shear loading. Composites Science and Technology, 2016, 126, 60-77.	7.8	71
28	Predicting the crushing behaviour of composite material using high-fidelity finite element modelling. International Journal of Crashworthiness, 2015, 20, 60-77.	1.9	54
29	Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates. Composites Part A: Applied Science and Manufacturing, 2015, 71, 212-226.	7.6	344