
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5449225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highâ€Entropy Alloys to Activate the Sulfur Cathode for Lithium–Sulfur Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	31
2	Inverse-opal structured TiO2 regulating electrodeposition behavior to enable stable lithium metal electrodes. Green Energy and Environment, 2023, 8, 1664-1672.	4.7	3
3	Insights into Liâ€Rich Mnâ€Based Cathode Materials with High Capacity: from Dimension to Lattice to Atom. Advanced Energy Materials, 2022, 12, 2003885.	10.2	70
4	Highâ€Entropy Spinel Oxide Nanofibers as Catalytic Sulfur Hosts Promise the High Gravimetric and Volumetric Capacities for Lithium–Sulfur Batteries. Energy and Environmental Materials, 2022, 5, 645-654.	7.3	69
5	Building the Stable Oxygen Framework in Highâ€Ni Layered Oxide Cathode for Highâ€Energyâ€Density Liâ€lon Batteries. Energy and Environmental Materials, 2022, 5, 1260-1269.	7.3	15
6	Quantitatively regulating defects of 2D tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery. Energy Storage Materials, 2022, 45, 1229-1237.	9.5	81
7	Heterostructured Gel Polymer Electrolyte Enabling Long-Cycle Quasi-Solid-State Lithium Metal Batteries. ACS Energy Letters, 2022, 7, 42-52.	8.8	53
8	Colloidal Quantum Dot Solar Cells: Progressive Deposition Techniques and Future Prospects on Largeâ€Area Fabrication. Advanced Materials, 2022, 34, e2107888.	11.1	39
9	Coupling aqueous zinc batteries and perovskite solar cells for simultaneous energy harvest, conversion and storage. Nature Communications, 2022, 13, 64.	5.8	43
10	Specific Adsorption Reinforced Interface Enabling Stable Lithium Metal Electrode. Advanced Functional Materials, 2022, 32, .	7.8	13
11	La ₂ MoO ₆ as an Effective Catalyst for the Cathode Reactions of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 5247-5256.	4.0	5
12	Organo-Soluble Decanoic Acid-Modified Ni-Rich Cathode Material LiNi _{0.90} Co _{0.07} Mn _{0.03} O ₂ for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 16348-16356.	4.0	10
13	A Sustainable Multipurpose Separator Directed Against the Shuttle Effect of Polysulfides for Highâ€Performance Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	53
14	Nickel–Platinum Alloy Nanocrystallites with Highâ€Index Facets as Highly Effective Core Catalyst for Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	27
15	High-Efficiency Hybrid Sulfur Cathode Based on Electroactive Niobium Tungsten Oxide and Conductive Carbon Nanotubes for All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 1212-1221.	4.0	15
16	Reversible Degradation in Hole Transport Layerâ€Free Carbonâ€Based Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	4
17	Eu2O3-doped Li4SiO4 coating layer with a high ionic conductivity improving performance of LiNi0.8Co0.1Mn0.1O2 cathode materials. Electrochimica Acta, 2022, 420, 140436.	2.6	4
18	La2NiO4 nanoparticles as a core host of sulfur to enhance cathode volumetric capacity for lithium–sulfur battery. Electrochimica Acta, 2022, 424, 140670.	2.6	3

#	Article	IF	CITATIONS
19	Perovskite transition metal oxide of nanofibers as catalytic hosts for lithium–sulfur battery. Journal of Alloys and Compounds, 2022, 918, 165660.	2.8	12
20	A dimensionally stable lithium alloy based composite electrode for lithium metal batteries. Chemical Engineering Journal, 2022, 450, 138074.	6.6	6
21	A pâ€p ⁺ Homojunctionâ€Enhanced Hole Transfer in Inverted Planar Perovskite Solar Cells. ChemSusChem, 2021, 14, 1396-1403.	3.6	20
22	From Dendrites to Hemispheres: Changing Lithium Deposition by Highly Ordered Charge Transfer Channels. ACS Applied Materials & amp; Interfaces, 2021, 13, 6249-6256.	4.0	10
23	Constructing high gravimetric and volumetric capacity sulfur cathode with LiCoO2 nanofibers as carbon-free sulfur host for lithium-sulfur battery. Science China Materials, 2021, 64, 1343-1354.	3.5	23
24	Yttrium Surface Gradient Doping for Enhancing Structure and Thermal Stability of High-Ni Layered Oxide as Cathode for Li–Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 7343-7354.	4.0	51
25	Hollow Molybdate Microspheres as Catalytic Hosts for Enhancing the Electrochemical Performance of Sulfur Cathode under High Sulfur Loading and Lean Electrolyte. Advanced Functional Materials, 2021, 31, 2010693.	7.8	57
26	Crystalline Multiâ€Metallic Compounds as Host Materials in Cathode for Lithium–Sulfur Batteries. Small, 2021, 17, e2005332.	5.2	33
27	To Promote the Catalytic Conversion of Polysulfides Using Ni–B Alloy Nanoparticles on Carbon Nanotube Microspheres under High Sulfur Loading and a Lean Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 20222-20232.	4.0	18
28	Twoâ€Terminal Perovskiteâ€Based Tandem Solar Cells for Energy Conversion and Storage. Small, 2021, 17, e2006145.	5.2	16
29	Uniform lithium plating within 3D Cu foam enabled by Ag nanoparticles. Electrochimica Acta, 2021, 379, 138152.	2.6	18
30	The Isostructural Substitutionâ€Induced Growth Mechanism of Rutile TiO ₂ Electron Transport Layer and the Dominant Distribution for Efficient Carbonâ€Based Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100307.	3.1	3
31	Congener Substitution Reinforced Li ₇ P _{2.9} Sb _{0.1} S _{10.75} O _{0.25} Glass-Ceramic Electrolytes for All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13. 34477-34485.	4.0	22
32	Enabling LiNi _{0.88} Co _{0.09} Al _{0.03} O ₂ Cathode Materials with Stable Interface by Modifying Electrolyte with Trimethyl Borate. ACS Sustainable Chemistry and Engineering, 2021, 9, 1958-1968.	3.2	16
33	Sulfur vacancies in Co ₉ S _{8â^'x} /N-doped graphene enhancing the electrochemical kinetics for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 10704-10713.	5.2	53
34	Strategy of Enhancing the Volumetric Energy Density for Lithium–Sulfur Batteries. Advanced Materials, 2021, 33, e2003955.	11.1	185
35	Elucidating the Effect of the Dopant Ionic Radius on the Structure and Electrochemical Performance of Ni-Rich Layered Oxides for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 56233-56241.	4.0	21
36	Lowâ€Cost Counterâ€Electrode Materials for Dyeâ€Sensitized and Perovskite Solar Cells. Advanced Materials, 2020, 32, e1806478.	11.1	99

#	Article	IF	CITATIONS
37	Size-Dependent Lattice Structure and Confinement Properties in CsPbl ₃ Perovskite Nanocrystals: Negative Surface Energy for Stabilization. ACS Energy Letters, 2020, 5, 238-247.	8.8	201
38	Covalently Bonded Sulfur Anchored with Thiol-Modified Carbon Nanotube as a Cathode Material for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 487-494.	2.5	19
39	Understanding the Structure–Performance Relationship of Lithium-Rich Cathode Materials from an Oxygen-Vacancy Perspective. ACS Applied Materials & Interfaces, 2020, 12, 47655-47666.	4.0	44
40	To effectively drive the conversion of sulfur with electroactive niobium tungsten oxide microspheres for lithiumâ^'sulfur battery. Nano Energy, 2020, 77, 105173.	8.2	75
41	High Volumetric Energy Density Sulfur Cathode with Heavy and Catalytic Metal Oxide Host for Lithium–Sulfur Battery. Advanced Science, 2020, 7, 1903693.	5.6	96
42	Enhanced Electrochemical and Thermal Stabilities of Li[Ni 0.88 Co 0.09 Al 0.03]O 2 Cathode Material by La 4 NiLiO 8 Coating for Li–Ion Batteries. ChemElectroChem, 2020, 7, 2042-2047.	1.7	12
43	Quasi-solid-state solar rechargeable capacitors based on in-situ Janus modified electrode for solar energy multiplication effect. Science China Materials, 2020, 63, 1693-1702.	3.5	12
44	Spherical Metal Oxides with High Tap Density as Sulfur Host to Enhance Cathode Volumetric Capacity for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2020, 12, 5909-5919.	4.0	76
45	Conductive RuO2 stacking microspheres as an effective sulfur immobilizer for lithium–sulfur battery. Electrochimica Acta, 2020, 337, 135772.	2.6	36
46	Sulfur/nickel ferrite composite as cathode with high-volumetric-capacity for lithium-sulfur battery. Science China Materials, 2019, 62, 74-86.	3.5	86
47	Electrocatalytically active MoSe2 counter electrode prepared in situ by magnetron sputtering for a dye-sensitized solar cell. Chinese Journal of Catalysis, 2019, 40, 1360-1365.	6.9	6
48	High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nature Communications, 2019, 10, 2842.	5.8	308
49	Evolution mechanism of phase transformation of Li-rich cathode materials in cycling. Electrochimica Acta, 2019, 328, 135109.	2.6	43
50	A Quasi-Solid-State Solar Rechargeable Battery with Polyethylene Oxide Gel Electrolyte. ACS Applied Energy Materials, 2019, 2, 1000-1005.	2.5	24
51	Solarâ€Driven Rechargeable Lithium–Sulfur Battery. Advanced Science, 2019, 6, 1900620.	5.6	59
52	Metalophilic Gel Polymer Electrolyte for in Situ Tailoring Cathode/Electrolyte Interface of High-Nickel Oxide Cathodes in Quasi-Solid-State Li-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 14830-14839.	4.0	39
53	Conductive CoOOH as Carbonâ€Free Sulfur Immobilizer to Fabricate Sulfurâ€Based Composite for Lithium–Sulfur Battery. Advanced Functional Materials, 2019, 29, 1901051.	7.8	157
54	Lithium–Magnesium Alloy as a Stable Anode for Lithium–Sulfur Battery. Advanced Functional Materials, 2019, 29, 1808756.	7.8	148

#	Article	IF	CITATIONS
55	In-situ surface modification to stabilize Ni-rich layered oxide cathode with functional electrolyte. Journal of Power Sources, 2019, 410-411, 115-123.	4.0	67
56	NiCo ₂ O ₄ Nanofibers as Carbonâ€Free Sulfur Immobilizer to Fabricate Sulfurâ€Based Composite with High Volumetric Capacity for Lithium–Sulfur Battery. Advanced Energy Materials, 2019, 9, 1803477.	10.2	252
57	Free-Standing Porous Carbon Nanofiber/Carbon Nanotube Film as Sulfur Immobilizer with High Areal Capacity for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2018, 10, 8749-8757.	4.0	129
58	Lithiophilic gel polymer electrolyte to stabilize the lithium anode for a quasi-solid-state lithium–sulfur battery. Journal of Materials Chemistry A, 2018, 6, 18627-18634.	5.2	69
59	A solar rechargeable battery based on the sodium ion storage mechanism with Fe ₂ (MoO ₄) ₃ microspheres as anode materials. Journal of Materials Chemistry A, 2018, 6, 10627-10631.	5.2	21
60	Na-Doped LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ with Excellent Stability of Both Capacity and Potential as Cathode Materials for Li-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 3881-3889.	2.5	112
61	A Highâ€Efficiency Sulfur/Carbon Composite Based on 3D Graphene Nanosheet@Carbon Nanotube Matrix as Cathode for Lithium–Sulfur Battery. Advanced Energy Materials, 2017, 7, 1602543.	10.2	363
62	A solar rechargeable battery based on hydrogen storage mechanism in dual-phase electrolyte. Nano Energy, 2017, 38, 257-262.	8.2	26
63	Carbon nitride transparent counter electrode prepared by magnetron sputtering for a dye-sensitized solar cell. Green Energy and Environment, 2017, 2, 302-309.	4.7	29
64	Non-precious transition metals as counter electrode of perovskite solar cells. Energy Storage Materials, 2017, 7, 40-47.	9.5	56
65	Tailoring atomic distribution in micron-sized and spherical Li-rich layered oxides as cathode materials for advanced lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7689-7699.	5.2	55
66	A solar storable fuel cell with efficient photo-degradation of organic waste for direct electricity generation. Energy Storage Materials, 2016, 5, 165-170.	9.5	10
67	Porous Carbon Paper as Interlayer to Stabilize the Lithium Anode for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2016, 8, 31684-31694.	4.0	83
68	Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2016, 8, 7783-7789.	4.0	140
69	To enhance the capacity of Li-rich layered oxides by surface modification with metal–organic frameworks (MOFs) as cathodes for advanced lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 4440-4447.	5.2	72
70	Quantum Dots and Nanoparticles in Light Emitting Diodes, Displays, and Optoelectronic Devices. Journal of Nanomaterials, 2015, 2015, 1-2.	1.5	4
71	Sn-stabilized Li-rich layered Li(Li _{0.17} Ni _{0.25} Mn _{0.58})O ₂ oxide as a cathode for advanced lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 17627-17634.	5.2	105
72	The Effect of Polyanion-Doping on the Structure and Electrochemical Performance of Li-Rich Layered Oxides as Cathode for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1899-A1904.	1.3	71

#	Article	IF	CITATIONS
73	Encapsulating sulfur into a hybrid porous carbon/CNT substrate as a cathode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 6827-6834.	5.2	73
74	Protected lithium anode with porous Al ₂ O ₃ layer for lithium–sulfur battery. Journal of Materials Chemistry A, 2015, 3, 12213-12219.	5.2	189
75	Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. Journal of Materials Chemistry A, 2015, 3, 959-962.	5.2	297
76	Morphology dependence of molybdenum disulfide transparent counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 3919.	5.2	151
77	High performance LiMnPO ₄ /C prepared by a crystallite size control method. Journal of Materials Chemistry A, 2014, 2, 15070-15077.	5.2	49
78	Sulfur/polyacrylonitrile/carbon multi-composites as cathode materials for lithium/sulfur battery in the concentrated electrolyte. Journal of Materials Chemistry A, 2014, 2, 4652-4659.	5.2	100
79	Electroactive Organic Compounds as Anode-Active Materials for Solar Rechargeable Redox Flow Battery in Dual-Phase Electrolytes. Journal of the Electrochemical Society, 2014, 161, A736-A741.	1.3	45
80	Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochimica Acta, 2014, 135, 199-207.	2.6	122
81	Li4â^'xNaxTi5O12 with low operation potential as anode for lithium ion batteries. Journal of Power Sources, 2014, 248, 323-329.	4.0	28
82	Metal sulfide counter electrodes for dye-sensitized solar cells: A balanced strategy for optical transparency and electrochemical activity. Journal of Power Sources, 2014, 266, 464-470.	4.0	28
83	Sulfur/activated-conductive carbon black composites as cathode materials forÂlithium/sulfur battery. Journal of Power Sources, 2013, 240, 598-605.	4.0	92
84	Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries. RSC Advances, 2013, 3, 12593.	1.7	165
85	Insight into effects of graphene in Li4Ti5O12/carbon composite with high rate capability as anode materials for lithium ion batteries. Electrochimica Acta, 2013, 102, 282-289.	2.6	84
86	Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li–Mn–PO4 as the cathode for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 5262.	5.2	151
87	A Solar Rechargeable Flow Battery Based on Photoregeneration of Two Soluble Redox Couples. ChemSusChem, 2013, 6, 802-806.	3.6	102
88	Solar rechargeable redox flow battery based on Li2WO4/LiI couples in dual-phase electrolytes. Journal of Materials Chemistry A, 2013, 1, 7012.	5.2	101
89	Sulfur-Polypyrrole/Graphene Multi-Composites as Cathode for Lithium-Sulfur Battery. Journal of the Electrochemical Society, 2013, 160, A805-A810.	1.3	60
90	Current Status, Problems and Challenges in Lithium-sulfur Batteries. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 1181-1186.	0.6	32

#	Article	IF	CITATIONS
91	AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries. Electrochimica Acta, 2012, 78, 308-315.	2.6	180
92	Driving selective aerobic oxidation of alkyl aromatics by sunlight on alcohol grafted metal hydroxides. Chemical Science, 2012, 3, 2138.	3.7	61
93	Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries. Energy and Environmental Science, 2012, 5, 9743.	15.6	365
94	Synergistic effect of molybdenum nitride and carbon nanotubes on electrocatalysis for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 20580.	6.7	69
95	TiN Nanotube Arrays as Electrocatalytic Electrode for Solar Storable Rechargeable Battery. Journal of the Electrochemical Society, 2012, 159, A1770-A1774.	1.3	39
96	Surface nitridation of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as cathode material for lithium-ion battery. Journal of Materials Chemistry, 2012, 22, 13104.	6.7	178
97	Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 1339-1342.	1.3	171
98	A Polyanilineâ€Coated Sulfur/Carbon Composite with an Enhanced Highâ€Rate Capability as a Cathode Material for Lithium/Sulfur Batteries. Advanced Energy Materials, 2012, 2, 1238-1245.	10.2	495
99	A solar rechargeable battery based on polymeric charge storage electrodes. Electrochemistry Communications, 2012, 16, 69-72.	2.3	68
100	TiN-conductive carbon black composite as counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2012, 65, 216-220.	2.6	87
101	Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 1680.	15.6	390
102	Mesoporous polyaniline/TiO2 microspheres with core–shell structure as anode materials for lithium ion battery. Journal of Power Sources, 2011, 196, 4735-4740.	4.0	86
103	Carbon Nanotubes with Titanium Nitride as a Lowâ€Cost Counterâ€Electrode Material for Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2010, 49, 3653-3656.	7.2	554
104	Mesoporous polyaniline or polypyrrole/anatase TiO2 nanocomposite as anode materials for lithium-ion batteries. Electrochimica Acta, 2010, 55, 4567-4572.	2.6	97
105	Highly ordered mesoporous carbon arrays from natural wood materials as counter electrode for dye-sensitized solar cells. Electrochemistry Communications, 2010, 12, 924-927.	2.3	63
106	Surface-Nitrided Nickel with Bifunctional Structure As Low-Cost Counter Electrode for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 13397-13401.	1.5	149
107	Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy and Environmental Science, 2010, 3, 1531.	15.6	1,187
108	Adsorption of CO ₂ on the Rutile (110) Surface in Ionic Liquid. A Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2009, 113, 19389-19392.	1.5	17

#	Article	IF	CITATIONS
109	Structure Transformation and Photoelectrochemical Properties of TiO ₂ Nanomaterials Calcined from Titanate Nanotubes. Journal of Physical Chemistry C, 2009, 113, 3359-3363.	1.5	73
110	Preparation and electrochemical properties of Co–Si3N4 nanocomposites. Journal of Power Sources, 2008, 184, 657-662.	4.0	30
111	Electrochemical lithium storage of titania nanotubes modified with NiO nanoparticles. Electrochimica Acta, 2008, 53, 4573-4579.	2.6	33
112	Microstructure and electrochemical properties of the Co–BN composites. Electrochimica Acta, 2008, 53, 2369-2375.	2.6	35
113	Electrochemical lithium storage of sodium titanate nanotubes and nanorods. Electrochimica Acta, 2008, 53, 7061-7068.	2.6	76
114	Electrochemical hydrogen storage of NdMg12–Ni composites modified with carbon nanotubes and BN particles. Journal of Alloys and Compounds, 2008, 463, 378-384.	2.8	3
115	Morphologyâ^'Function Relationship of ZnO: Polar Planes, Oxygen Vacancies, and Activity. Journal of Physical Chemistry C, 2008, 112, 11859-11864.	1.5	299
116	Ferromagnetism of Co-Doped Titanate and Anatase Nanorods Before and After Lithium Intercalation. Journal of Physical Chemistry C, 2008, 112, 5384-5389.	1.5	23
117	Electrochemical hydrogen storage of ball-milled Mg-rich Mg–Nd alloy with Ni powders. Journal of Alloys and Compounds, 2007, 433, 269-273.	2.8	11
118	Ferromagnetism of Co-doped TiO2(B) nanotubes. Applied Physics Letters, 2007, 91, .	1.5	43
119	Well-Ordered Structure at Ionic Liquid/Rutile (110) Interface. Journal of Physical Chemistry C, 2007, 111, 12161-12164.	1.5	52
120	Microstructure and Electrochemical Properties of Al-Substituted Nickel Hydroxides Modified with CoOOH Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 17082-17087.	1.5	66
121	Electrochemical Lithium Storage of Titanate and Titania Nanotubes and Nanorods. Journal of Physical Chemistry C, 2007, 111, 6143-6148.	1.5	198
122	Si–AB5 composites as anode materials for lithium ion batteries. Electrochemistry Communications, 2007, 9, 713-717.	2.3	36
123	Si–Si3N4 composites as anode materials for lithium ion batteries. Solid State Ionics, 2007, 178, 1107-1112.	1.3	32
124	Hydrothermal Synthesis of Zn2SnO4as Anode Materials for Li-Ion Battery. Journal of Physical Chemistry B, 2006, 110, 14754-14760.	1.2	239
125	Praseodymium Hydroxide and Oxide Nanorods and Au/Pr6O11Nanorod Catalysts for CO Oxidation. Journal of Physical Chemistry B, 2006, 110, 1614-1620.	1.2	58
126	Surface Selective Deposition of Mo(IV) on Ni/TiO2Particles in Aqueous Solutions. Langmuir, 2006, 22, 5867-5871.	1.6	3

#	Article	IF	CITATIONS
127	Morphology and hydrodesulfurization activity of CoMo sulfide supported on amorphous ZrO2 nanoparticles combined with Al2O3. Applied Catalysis A: General, 2004, 273, 233-238.	2.2	48
128	Characterization and catalytic application of homogeneous nano-composite oxides ZrO2–Al2O3. Catalysis Today, 2004, 93-95, 595-601.	2.2	65