Yifeng Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/5449163/yifeng-zhang-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

22 283 10 16 g-index

28 471 7 3.16 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
22	Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. <i>Nature Communications</i> , 2020 , 11, 971	17.4	43
21	Identification and functional characterization of diterpene synthases for triptolide biosynthesis from Tripterygium wilfordii. <i>Plant Journal</i> , 2018 , 93, 50-65	6.9	36
20	Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. <i>Metabolic Engineering</i> , 2020 , 60, 87-96	9.7	30
19	Friedelane-type triterpene cyclase in celastrol biosynthesis from Tripterygium wilfordii and its application for triterpenes biosynthesis in yeast. <i>New Phytologist</i> , 2019 , 223, 722-735	9.8	28
18	The chromosome-level reference genome assembly for and insights into ginsenoside biosynthesis. <i>Plant Communications</i> , 2021 , 2, 100113	9	20
17	Genetic Transformation System for Woody Plant and Its Application to Product Natural Celastrol. <i>Frontiers in Plant Science</i> , 2017 , 8, 2221	6.2	16
16	Probing the Single Key Amino Acid Responsible for the Novel Catalytic Function of -Kaurene Oxidase Supported by NADPH-Cytochrome P450 Reductases in. <i>Frontiers in Plant Science</i> , 2017 , 8, 1756	6.2	14
15	Overexpression and RNA interference of TwDXR regulate the accumulation of terpenoid active ingredients in Tripterygium wilfordii. <i>Biotechnology Letters</i> , 2018 , 40, 419-425	3	12
14	Functional characterization of squalene epoxidase genes in the medicinal plant Tripterygium wilfordii. <i>International Journal of Biological Macromolecules</i> , 2018 , 120, 203-212	7.9	12
13	Functional characterization of NES and GES responsible for the biosynthesis of (E)-nerolidol and (E,E)-geranyllinalool in Tripterygium wilfordii. <i>Scientific Reports</i> , 2017 , 7, 40851	4.9	11
12	A novel strategy to enhance terpenoids production using cambial meristematic cells of Hook. f. <i>Plant Methods</i> , 2019 , 15, 129	5.8	10
11	Molecular cloning and functional identification of sterol C24-methyltransferase gene from. <i>Acta Pharmaceutica Sinica B</i> , 2017 , 7, 603-609	15.5	9
10	Analysis of the role of geranylgeranyl diphosphate synthase 8 from Tripterygium wilfordii in diterpenoids biosynthesis. <i>Plant Science</i> , 2019 , 285, 184-192	5.3	8
9	The expression of TwDXS in the MEP pathway specifically affects the accumulation of triptolide. <i>Physiologia Plantarum</i> , 2020 , 169, 40-48	4.6	8
8	Triptolide: pharmacological spectrum, biosynthesis, chemical synthesis and derivatives. <i>Theranostics</i> , 2021 , 11, 7199-7221	12.1	8
7	The gibberellin 13-oxidase that specifically converts gibberellin A to A in Tripterygium wilfordii is a 2-oxoglutarate-dependent dioxygenase. <i>Planta</i> , 2019 , 250, 1613-1620	4.7	7
6	Overexpression and RNAi-mediated downregulation of TwIDI regulates triptolide and celastrol accumulation in Tripterygium wilfordii. <i>Gene</i> , 2018 , 679, 195-201	3.8	7

LIST OF PUBLICATIONS

5	Cytochrome P450 catalyses the 29-carboxyl group formation of celastrol. <i>Phytochemistry</i> , 2021 , 190, 112868	4	3
4	Investigating the Catalytic Activity of Glycosyltransferase on Quercetin from. ACS Omega, 2020, 5, 1414	- <u>1</u> . <u>4</u> 21	O
3	A cytochrome P450 CYP81AM1 from Tripterygium wilfordii catalyses the C-15 hydroxylation of dehydroabietic acid. <i>Planta</i> , 2021 , 254, 95	4.7	О
2	Cytochrome P450s in plant terpenoid biosynthesis: discovery, characterization and metabolic engineering. <i>Critical Reviews in Biotechnology</i> , 2021 , 1-21	9.4	О
1	Probing the function of protein farnesyltransferase in Tripterygium wilfordii. <i>Plant Cell Reports</i> , 2019 , 38, 211-220	5.1	