List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5448916/publications.pdf Version: 2024-02-01

KEN RICE

#	Article	IF	CITATIONS
1	Investigating the architecture and internal structure of the TOI-561 system planets with CHEOPS, HARPS-N, and TESS. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4551-4571.	1.6	17
2	K2-79b and K2-222b: Mass Measurements of Two Small Exoplanets with Periods beyond 10 days that Overlap with Periodic Magnetic Activity Signals. Astronomical Journal, 2022, 163, 41.	1.9	3
3	Binary companions triggering fragmentation in self-gravitating discs. Monthly Notices of the Royal Astronomical Society, 2022, 511, 457-471.	1.6	9
4	Comment on "World Atmospheric CO2, Its 14C Specific Activity, Non-fossil Component, Anthropogenic Fossil Component, and Emissions (1750–2018)―(Skrable et al. 2022). Health Physics, 2022, 123, 28-30.	0.3	0
5	Identifying Exoplanets with Deep Learning. IV. Removing Stellar Activity Signals from Radial Velocity Measurements Using Neural Networks. Astronomical Journal, 2022, 164, 49.	1.9	20
6	Skeptical Science. , 2021, , 301-314.		0
7	AB Aurigae: possible evidence of planet formation through the gravitational instability. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2877-2888.	1.6	7
8	Three years of HARPS-N high-resolution spectroscopy and precise radial velocity data for the Sun. Astronomy and Astrophysics, 2021, 648, A103.	2.1	58
9	Detection Limits of Low-mass, Long-period Exoplanets Using Gaussian Processes Applied to HARPS-N Solar Radial Velocities. Astronomical Journal, 2021, 161, 287.	1.9	17
10	The SPHERE infrared survey for exoplanets (SHINE). Astronomy and Astrophysics, 2021, 651, A72.	2.1	117
11	TOI-1634 b: An Ultra-short-period Keystone Planet Sitting inside the M-dwarf Radius Valley. Astronomical Journal, 2021, 162, 79.	1.9	25
12	A HARPS-N mass for the elusive Kepler-37d: a case study in disentangling stellar activity and planetary signals. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1847-1868.	1.6	10
13	An unusually low density ultra-short period super-Earth and three mini-Neptunes around the old star TOI-561. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4148-4166.	1.6	32
14	Effect of school closures on mortality from coronavirus disease 2019: old and new predictions. BMJ, The, 2020, 371, m3588.	3.0	53
15	The UK needs a sustainable strategy for COVID-19. Lancet, The, 2020, 396, 1800-1801.	6.3	23
16	Massive discs around low-mass stars. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4130-4148.	1.6	26
17	The observational impact of dust trapping in self-gravitating discs. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4256-4271.	1.6	11
18	TOI-1235 b: A Keystone Super-Earth for Testing Radius Valley Emergence Models around Early M Dwarfs. Astronomical Journal, 2020, 160, 22.	1.9	33

#	Article	IF	CITATIONS
19	A Pair of TESS Planets Spanning the Radius Valley around the Nearby Mid-M Dwarf LTT 3780. Astronomical Journal, 2020, 160, 3.	1.9	62
20	An ultra-short period rocky super-Earth orbiting the G2-star HD 80653. Astronomy and Astrophysics, 2020, 633, A133.	2.1	24
21	The search for disks or planetary objects around directly imaged companions: a candidate around DH Tauri B. Astronomy and Astrophysics, 2020, 641, A131.	2.1	9
22	Fragmentation favoured in discs around higher mass stars. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5041-5051.	1.6	14
23	K2-111: an old system with two planets in near-resonanceâ€. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5004-5021.	1.6	22
24	Temporal evolution and correlations of optical activity indicators measured in Sun-as-a-star observations. Astronomy and Astrophysics, 2019, 627, A118.	2.1	31
25	An 11 Earth-mass, Long-period Sub-Neptune Orbiting a Sun-like Star. Astronomical Journal, 2019, 158, 165.	1.9	14
26	Using HARPS-N to characterize the long-period planets in the PH-2 and Kepler-103 systems. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5103-5121.	1.6	10
27	Giant planets and brown dwarfs on wide orbits: a code comparison project. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4398-4413.	1.6	17
28	Three years of Sun-as-a-star radial-velocity observations on the approach to solar minimum. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1082-1100.	1.6	81
29	The Temporal Requirements of Directly Observing Self-gravitating Spiral Waves in Protoplanetary Disks with ALMA. Astrophysical Journal, 2019, 871, 228.	1.6	24
30	A high binary fraction for the most massive close-in giant planets and brown dwarf desert members. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4967-4996.	1.6	56
31	HARPS-N radial velocities confirm the low densities of the Kepler-9 planets. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3233-3243.	1.6	28
32	K2-291b: A Rocky Super-Earth in a 2.2 day Orbit [*] â€. Astronomical Journal, 2019, 157, 116.	1.9	13
33	HARPS-N Solar RVs Are Dominated by Large, Bright Magnetic Regions. Astrophysical Journal, 2019, 874, 107.	1.6	59
34	Masses and radii for the three super-Earths orbiting GJ 9827, and implications for the composition of small exoplanets. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3731-3745.	1.6	38
35	So close, so different: characterization of the K2-36 planetary system with HARPS-N. Astronomy and Astrophysics, 2019, 624, A38.	2.1	13
36	A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system. Nature Astronomy, 2019, 3, 416-423.	4.2	64

#	Article	IF	CITATIONS
37	An Ultra-short Period Rocky Super-Earth with a Secondary Eclipse and a Neptune-like Companion around K2-141. Astronomical Journal, 2018, 155, 107.	1.9	103
38	The UK Centre for Astrobiology: A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011–2016. Astrobiology, 2018, 18, 224-243.	1.5	5
39	On fragmentation of turbulent self-gravitating discs in the long cooling time regime. Monthly Notices of the Royal Astronomical Society, 2018, 475, 921-931.	1.6	3
40	Comment on " Scrutinizing the carbon cycle and CO 2 residence time in the atmosphere ―by H. Harde. Global and Planetary Change, 2018, 164, 67-71.	1.6	8
41	How formation time-scales affect the period dependence of the transition between rocky super-Earths and gaseous sub-Neptunesand implications for 1-⊕. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5303-5311.	1.6	83
42	The Fate of Formamide in a Fragmenting Protoplanetary Disk. Astrophysical Journal, 2018, 868, 9.	1.6	10
43	K2-263 b: a 50 d period sub-Neptune with a mass measurement using HARPS-N. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1839-1847.	1.6	11
44	Is the spiral morphology of the Elias 2-27 circumstellar disc due to gravitational instability?. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1004-1014.	1.6	28
45	Eyes on K2-3: A system of three likely sub-Neptunes characterized with HARPS-N and HARPS. Astronomy and Astrophysics, 2018, 615, A69.	2.1	29
46	Towards a population synthesis model of self-gravitating disc fragmentation and tidal downsizing II: the effect of fragment–fragment interactions. Monthly Notices of the Royal Astronomical Society, 2018, 474, 5036-5048.	1.6	77
47	An Accurate Mass Determination for Kepler-1655b, a Moderately Irradiated World with a Significant Volatile Envelope. Astronomical Journal, 2018, 155, 203.	1.9	19
48	The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations. Astronomical Journal, 2017, 153, 224.	1.9	58
49	The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. Astronomy and Astrophysics, 2017, 603, A3.	2.1	97
50	Identifying and analysing protostellar disc fragments in smoothed particle hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2517-2538.	1.6	38
51	Three's Company: An Additional Non-transiting Super-Earth in the Bright HD 3167 System, and Masses for All Three Planets. Astronomical Journal, 2017, 154, 122.	1.9	90
52	The chemistry of protoplanetary fragments formed via gravitational instabilities. Monthly Notices of the Royal Astronomical Society, 2017, 472, 189-204.	1.6	60
53	Precise Masses in the WASP-47 System. Astronomical Journal, 2017, 154, 237.	1.9	66
54	Does It Matter if the Consensus on Anthropogenic Global Warming Is 97% or 99.99%?. Bulletin of Science, Technology and Society, 2016, 36, 150-156.	1.1	21

#	Article	IF	CITATIONS
55	Grand Challenges in Protoplanetary Disc Modelling. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	61
56	KEPLER-21b: A ROCKY PLANET AROUND A VÂ=Â8.25 mag STAR*. Astronomical Journal, 2016, 152, 204.	1.9	80
57	A 1.9 EARTH RADIUS ROCKY PLANET AND THE DISCOVERY OF A NON-TRANSITING PLANET IN THE KEPLER-20 SYSTEM*. Astronomical Journal, 2016, 152, 160.	1.9	85
58	The Evolution of Self-Gravitating Accretion Discs. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	38
59	Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environmental Research Letters, 2016, 11, 048002.	2.2	761
60	Detecting structure in a protostellar disk. Science, 2016, 353, 1492-1493.	6.0	0
61	THE ORBIT AND MASS OF THE THIRD PLANET IN THE KEPLER-56 SYSTEM. Astronomical Journal, 2016, 152, 165.	1.9	58
62	THE KEPLER-454 SYSTEM: A SMALL, NOT-ROCKY INNER PLANET, A JOVIAN WORLD, AND A DISTANT COMPANION. Astrophysical Journal, 2016, 816, 95.	1.6	55
63	Tensor classification of structure in smoothed particle hydrodynamics density fields. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2501-2513.	1.6	3
64	Directly observing continuum emission from self-gravitating spiral waves. Monthly Notices of the Royal Astronomical Society, 2016, 458, 306-318.	1.6	52
65	Polluted Discourse: Communication and Myths in a Climate of Denial. Advances in Natural and Technological Hazards Research, 2016, , 37-54.	1.1	1
66	SPIRAL ARMS IN GRAVITATIONALLY UNSTABLE PROTOPLANETARY DISKS AS IMAGED IN SCATTERED LIGHT. Astrophysical Journal Letters, 2015, 812, L32.	3.0	89
67	The HARPS-N Rocky Planet Search. Astronomy and Astrophysics, 2015, 584, A72.	2.1	108
68	THE QUEST FOR CRADLES OF LIFE: USING THE FUNDAMENTAL METALLICITY RELATION TO HUNT FOR THE MOST HABITABLE TYPE OF GALAXY. Astrophysical Journal Letters, 2015, 810, L2.	3.0	42
69	The Gemini NICI Planet-Finding Campaign: asymmetries in the HD 141569 disc. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4446-4457.	1.6	32
70	Characterization of small planets withKeplerand HARPS-N. EPJ Web of Conferences, 2015, 101, 06011.	0.1	0
71	Disc fragmentation rarely forms planetary-mass objects. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1940-1947.	1.6	45
72	THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS. Astrophysical Journal, 2015, 800, 135.	1.6	211

#	Article	IF	CITATIONS
73	CHARACTERIZING K2 PLANET DISCOVERIES: A SUPER-EARTH TRANSITING THE BRIGHT K DWARF HIP 116454. Astrophysical Journal, 2015, 800, 59.	1.6	104
74	Can Kozai–Lidov cycles explain Kepler-78b?. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1729-1737.	1.6	32
75	The dynamical fate of self-gravitating disc fragments after tidal downsizing. Monthly Notices of the Royal Astronomical Society, 2015, 447, 836-845.	1.6	28
76	Misdiagnosis of Earth climate sensitivity based on energy balance model results. Science Bulletin, 2015, 60, 1370-1377.	4.3	9
77	Clarity of meaning in IPCC press conference. Nature Climate Change, 2015, 5, 961-962.	8.1	3
78	Planetesimal formation in self-gravitating discs – dust trapping by vortices. Monthly Notices of the Royal Astronomical Society, 2015, 453, 4233-4244.	1.6	16
79	The Detection and Characterization of Extrasolar Planets. Challenges, 2014, 5, 296-323.	0.9	11
80	THE KEPLER-10 PLANETARY SYSTEM REVISITED BY HARPS-N: A HOT ROCKY WORLD AND A SOLID NEPTUNE-MASS PLANET. Astrophysical Journal, 2014, 789, 154.	1.6	164
81	Convergence of simulations of self-gravitating accretion discs – II. Sensitivity to the implementation of radiative cooling and artificial viscosity. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1593-1602.	1.6	47
82	Planetesimal formation in self-gravitating discs – the effects of particle self-gravity and back-reaction. Monthly Notices of the Royal Astronomical Society, 2014, 442, 361-371.	1.6	44
83	Characterization of the planetary system Kepler-101 with HARPS-N. Astronomy and Astrophysics, 2014, 572, A2.	2.1	35
84	A Review of Circumstellar Discs. Thirty Years of Astronomical Discovery With UKIRT, 2014, , 51-57.	0.3	0
85	An Earth-sized planet with an Earth-like density. Nature, 2013, 503, 377-380.	13.7	199
86	Misaligned streamers around a Galactic Centre black hole from a single cloud's infall. Monthly Notices of the Royal Astronomical Society, 2013, 433, 353-365.	1.6	41
87	How fast do Jupiters grow? Signatures of the snowline and growth rate in the distribution of gas giant planets. Monthly Notices of the Royal Astronomical Society, 2013, 428, 756-762.	1.6	28
88	The effect of irradiation on the Jeans mass in fragmenting self-gravitating protostellar discs. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2082-2089.	1.6	26
89	Towards a population synthesis model of objects formed by self-gravitating disc fragmentation and tidal downsizing. Monthly Notices of the Royal Astronomical Society, 2013, 432, 3168-3185.	1.6	117
90	The possibility of a self-gravitating disc around L1527 IRS?. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1796-1801.	1.6	13

#	Article	IF	CITATIONS
91	Forming misaligned stellar disks around a massive black hole: cloud infall in the Galactic center. Proceedings of the International Astronomical Union, 2013, 9, 245-247.	0.0	0
92	Tidal evolution of close-in giant planets: evidence of type II migration?. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2567-2575.	1.6	31
93	Planetesimal formation in self-gravitating discs. Monthly Notices of the Royal Astronomical Society, 2012, 426, 1444-1454.	1.6	64
94	Harps-N: the new planet hunter at TNG. Proceedings of SPIE, 2012, , .	0.8	219
95	A lower angular momentum limit for self-gravitating protostellar disc fragmentation. Monthly Notices of the Royal Astronomical Society, 2012, 420, 299-308.	1.6	11
96	Convergence of smoothed particle hydrodynamics simulations of self-gravitating accretion discs: sensitivity to the implementation of radiative cooling. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1640-1647.	1.6	34
97	The nature of angular momentum transport in radiative self-gravitating protostellar discs. Monthly Notices of the Royal Astronomical Society, 2011, 410, 994-1006.	1.6	60
98	Excitation of spiral density waves by convection in accretion discs. Monthly Notices of the Royal Astronomical Society, 2011, 417, 634-648.	1.6	5
99	The Jeans mass as a fundamental measure of self-gravitating disc fragmentation and initial fragment mass. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1928-1937.	1.6	89
100	Stability of self-gravitating discs under irradiation. Monthly Notices of the Royal Astronomical Society, 2011, 418, 1356-1362.	1.6	71
101	Do all Sun-like stars have planets? Inferences from the disc mass reservoirs of Class 0 protostars. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 412, L88-L92.	1.2	18
102	Have protoplanetary discs formed planets?. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1981-1988.	1.6	52
103	Stellar encounters in the context of outburst phenomena. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1349-1356.	1.6	33
104	The role of disc self-gravity in the formation of protostars and protostellar discs. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1740-1749.	1.6	85
105	Axisymmetric modes in vertically stratified self-gravitating discs. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	14
106	Native synthetic imaging of smoothed particle hydrodynamics density fields using gridless Monte Carlo radiative transfer. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2549-2558.	1.6	5
107	<i>Herschel</i> -PACS observation of the 10ÂMyr old TÂTauri disk TWÂHya. Astronomy and Astrophysics, 2010, 518, L125.	2.1	66
108	Gas in the protoplanetary disc of HD 169142: <i>Herschel</i> 's view. Astronomy and Astrophysics, 2010, 518, L124.	2.1	39

#	Article	IF	CITATIONS
109	TheHerschelview of GAS in Protoplanetary Systems (GASPS). Astronomy and Astrophysics, 2010, 518, L126.	2.1	23
110	GAS in Protoplanetary Systems (GASPS). Astronomy and Astrophysics, 2010, 518, L127.	2.1	23
111	Numerical testing of the Rare Earth Hypothesis using Monte Carlo realization techniques. International Journal of Astrobiology, 2010, 9, 73-80.	0.9	20
112	Building, moving and destroying Planets. , 2009, , .		0
113	Gas Evolution in Protoplanetary Disks. , 2009, , .		1
114	Introducing a Hybrid Method of Radiative Transfer in Smoothed Particle Hydrodynamics. , 2009, , .		1
115	Vortices in self-gravitating disks. , 2009, , .		0
116	Introducing a hybrid radiative transfer method for smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2009, 394, 882-891.	1.6	65
117	Time-dependent models of the structure and stability of self-gravitating protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2009, 396, 2228-2236.	1.6	102
118	Stellar encounters: a stimulus for disc fragmentation?. Monthly Notices of the Royal Astronomical Society, 2009, 400, 2022-2031.	1.6	25
119	Vortices in self-gravitating gaseous discs. Monthly Notices of the Royal Astronomical Society, 2009, 394, 2153-2163.	1.6	26
120	Enhanced dust emission in the HL Tau disc: a low-mass companion in formation?. Monthly Notices of the Royal Astronomical Society: Letters, 2008, 391, L74-L78.	1.2	15
121	Why are there so few hot Jupiters?. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1242-1248.	1.6	55
122	Star Formation Around Supermassive Black Holes. Science, 2008, 321, 1060-1062.	6.0	138
123	The role of the energy equation in the fragmentation of protostellar discs during stellar encounters. Monthly Notices of the Royal Astronomical Society, 2007, 374, 590-598.	1.6	27
124	The Circumbinary Disk of HD 98800B: Evidence for Disk Warping. Astrophysical Journal, 2007, 670, 1240-1246.	1.6	21
125	Planetesimal formation via fragmentation in sel-gravitating protoplanetary discs. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 372, L9-L13.	1.2	103
126	A comparative study of disc-planet interaction. Monthly Notices of the Royal Astronomical Society, 2006, 370, 529-558.	1.6	320

#	Article	IF	CITATIONS
127	Dust filtration at gap edges: implications for the spectral energy distributions of discs with embedded planets. Monthly Notices of the Royal Astronomical Society, 2006, 373, 1619-1626.	1.6	258
128	Quantifying Orbital Migration from Exoplanet Statistics and Host Metallicities. Astrophysical Journal, 2005, 630, 1107-1113.	1.6	34
129	Testing the locality of transport in self-gravitating accretion discs - II. The massive disc case. Monthly Notices of the Royal Astronomical Society, 2005, 358, 1489-1500.	1.6	178
130	Investigating fragmentation conditions in self-gravitating accretion discs. Monthly Notices of the Royal Astronomical Society: Letters, 2005, 364, L56-L60.	1.2	302
131	Particle acceleration at collisionless shocks: An overview. AIP Conference Proceedings, 2005, , .	0.3	2
132	Spiral shocks in astrophysical disks. AIP Conference Proceedings, 2005, , .	0.3	0
133	Acceleration and transport of heavy ions at coronal mass ejection-driven shocks. Journal of Geophysical Research, 2005, 110, .	3.3	87
134	Testing the locality of transport in self-gravitating accretion discs. AIP Conference Proceedings, 2004, , .	0.3	1
135	Testing the locality of transport in self-gravitating accretion discs. Monthly Notices of the Royal Astronomical Society, 2004, 351, 630-642.	1.6	280
136	Accelerated planetesimal growth in self-gravitating protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2004, 355, 543-552.	1.6	193
137	Astrometric signatures of self-gravitating protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2003, 338, 227-232.	1.6	41
138	The effect of cooling on the global stability of self-gravitating protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2003, 339, 1025-1030.	1.6	235
139	Constraints on a planetary origin for the gap in the protoplanetary disc of GM Aurigae. Monthly Notices of the Royal Astronomical Society, 2003, 342, 79-85.	1.6	157
140	Substellar companions and isolated planetary-mass objects from protostellar disc fragmentation. Monthly Notices of the Royal Astronomical Society, 2003, 346, L36-L40.	1.6	87
141	Particle acceleration at CME driven shock waves. Advances in Space Research, 2003, 31, 901-906.	1.2	6
142	Energetic particle acceleration and transport at coronal mass ejection-driven shocks. Journal of Geophysical Research, 2003, 108, .	3.3	159
143	Particle acceleration and coronal mass ejection driven shocks: Shocks of arbitrary strength. Journal of Geophysical Research, 2003, 108, .	3.3	107
144	The interaction of turbulence with shock waves. AIP Conference Proceedings, 2003, , .	0.3	5

#	Article	IF	CITATIONS
145	Particle transport at CME-driven shocks. AIP Conference Proceedings, 2003, , .	0.3	1
146	On the Formation Timescale and Core Masses of Gas Giant Planets. Astrophysical Journal, 2003, 598, L55-L58.	1.6	108
147	Acceleration and transport of energetic particles at CME-driven shocks. Advances in Space Research, 2003, 32, 2597-2602.	1.2	6
148	The interaction of turbulence with shock waves: A basic model. Physics of Fluids, 2002, 14, 3766-3774.	1.6	42
149	The latitudinal dependence of whistler â€~ghost' delay times. Advances in Space Research, 2002, 30, 2619-2624.	1.2	1
150	The "injection problem―for quasiparallel shocks. Physics of Plasmas, 2001, 8, 4560-4576.	0.7	40
151	Predicted timing for the turn-on of radiation in the outer heliosphere due to the Bastille Day shock. Journal of Geophysical Research, 2001, 106, 29363-29372.	3.3	15
152	The preacceleration of anomalous cosmic rays. Advances in Space Research, 2001, 27, 835-840.	1.2	3
153	The Injection Problem for Anomalous Cosmic Rays. Astrophysical Journal, 2001, 556, 494-500.	1.6	32
154	Particle acceleration at coronal mass ejection driven shocks. AIP Conference Proceedings, 2000, , .	0.3	0
155	The injection problem for anomalous cosmic rays. AIP Conference Proceedings, 2000, , .	0.3	1
156	Transport of energetic charged particles in a radial magnetic field. Part 1. Large-angle scattering. Journal of Plasma Physics, 2000, 64, 507-541.	0.7	30
157	Ion injection and shock acceleration in the outer heliosphere. Geophysical Research Letters, 2000, 27, 509-512.	1.5	16
158	Shock propagation in the outer heliosphere: 3. Pickup ions, MHD, cosmic rays, and energetic particles. Journal of Geophysical Research, 2000, 105, 5157-5166.	3.3	10
159	Particle acceleration and coronal mass ejection driven shocks: A theoretical model. Journal of Geophysical Research, 2000, 105, 25079-25095.	3.3	300
160	An injection mechanism for shock waves of arbitrary obliquity. Geophysical Research Letters, 2000, 27, 3793-3796.	1.5	15
161	Shock propagation in the outer heliosphere: 2. Pickup ions and MHD. Journal of Geophysical Research, 1999, 104, 12563-12575.	3.3	18
162	Whistlers, Trimpis and evidence that electron precipitation may trigger atmospheric discharges. Journal of Atmospheric and Solar-Terrestrial Physics, 1998, 60, 1149-1158.	0.6	3

#	Article	IF	CITATIONS
163	A satellite study of low latitude electron and proton whistlers. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59, 1217-1222.	0.6	6
164	Finite electron mass effects on ion-acoustic solitons in a two electron temperature plasma. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 174, 416-420.	0.9	29
165	Particle Acceleration and Transport at CME-Driven Shocks: A Case Study. Geophysical Monograph Series, 0, , 51-58.	0.1	6