
Valentin Sencio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5448695/publications.pdf Version: 2024-02-01

VALENTIN SENCIO

#	Article	IF	CITATIONS
1	Evidence That SARS-CoV-2 Induces Lung Cell Senescence: Potential Impact on COVID-19 Lung Disease. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 107-111.	1.4	14
2	Acetate Improves the Killing of Streptococcus pneumoniae by Alveolar Macrophages via NLRP3 Inflammasome and Glycolysis-HIF-11± Axis. Frontiers in Immunology, 2022, 13, 773261.	2.2	27
3	Description of a Newly Isolated BlautiaÂfaecis Strain and Its Benefit in Mouse Models of Post-Influenza Secondary Enteric and Pulmonary Infections. Nutrients, 2022, 14, 1478.	1.7	7
4	Alteration of the gut microbiota following SARS-CoV-2 infection correlates with disease severity in hamsters. Gut Microbes, 2022, 14, 2018900.	4.3	47
5	Interaction between Bacteria and the Immune System for Cancer Immunotherapy: The α-GalCer Alliance. International Journal of Molecular Sciences, 2022, 23, 5896.	1.8	5
6	Alteration of the gut microbiota's composition and metabolic output correlates with COVID-19-like severity in obese NASH hamsters. Gut Microbes, 2022, 14, .	4.3	8
7	The lung–gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunology, 2021, 14, 296-304.	2.7	160
8	Short-Chain Fatty Acids as a Potential Treatment for Infections: a Closer Look at the Lungs. Infection and Immunity, 2021, 89, e0018821.	1.0	37
9	Influenza Virus Infection Impairs the Gut's Barrier Properties and Favors Secondary Enteric Bacterial Infection through Reduced Production of Short-Chain Fatty Acids. Infection and Immunity, 2021, 89, e0073420.	1.0	46
10	SARS-CoV-2 infection in nonhuman primates alters the composition and functional activity of the gut microbiota. Gut Microbes, 2021, 13, 1-19.	4.3	75
11	The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nature Neuroscience, 2021, 24, 1522-1533.	7.1	164
12	Influenza infection rewires energy metabolism and induces browning features in adipose cells and tissues. Communications Biology, 2020, 3, 237.	2.0	30
13	Gut Dysbiosis during Influenza Contributes to Pulmonary Pneumococcal Superinfection through Altered Short-Chain Fatty Acid Production. Cell Reports, 2020, 30, 2934-2947.e6.	2.9	221
14	Bacterial immunogenic α-galactosylceramide identified in the murine large intestine: dependency on diet and inflammation. Journal of Lipid Research, 2019, 60, 1892-1904.	2.0	32
15	Interleukin-22 Immunotherapy during Severe Influenza Enhances Lung Tissue Integrity and Reduces Secondary Bacterial Systemic Invasion. Infection and Immunity, 2018, 86, .	1.0	39
16	Alteration of Flt3-Ligand-dependent de novo generation of conventional dendritic cells during influenza infection contributes to respiratory bacterial superinfection. PLoS Pathogens, 2018, 14, e1007360.	2.1	29