
Rongchen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5448369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Positional effects on efficiency of CRISPR/Cas9-based transcriptional activation in rice plants. ABIOTECH, 2020, 1, 1-5.	1.8	13
2	Homeobox transcription factor OsZHD2 promotes root meristem activity in rice by inducing ethylene biosynthesis. Journal of Experimental Botany, 2020, 71, 5348-5364.	2.4	24
3	<i>PINOID</i> Is Required for Formation of the Stigma and Style in Rice. Plant Physiology, 2019, 180, 926-936.	2.3	30
4	Recent advances in auxin research in rice and their implications for crop improvement. Journal of Experimental Botany, 2018, 69, 255-263.	2.4	65
5	Programmed Self-Elimination of the CRISPR/Cas9 Construct Greatly Accelerates the Isolation of Edited and Transgene-Free Rice Plants. Molecular Plant, 2018, 11, 1210-1213.	3.9	159
6	The YUCCA-Auxin-WOX11 Module Controls Crown Root Development in Rice. Frontiers in Plant Science, 2018, 9, 523.	1.7	95
7	On Improving CRISPR for Editing Plant Genes: Ribozyme-Mediated Guide RNA Production and Fluorescence-Based Technology for Isolating Transgene-Free Mutants Generated by CRISPR. Progress in Molecular Biology and Translational Science, 2017, 149, 151-166.	0.9	25
8	Self-cleaving ribozymes enable the production of guide RNAs from unlimited choices of promoters for CRISPR/Cas9 mediated genome editing. Journal of Genetics and Genomics, 2017, 44, 469-472.	1.7	82
9	The <i>Arabidopsis CPSF30â€L</i> gene plays an essential role in nitrate signaling and regulates the nitrate transceptor gene <i><scp>NRT</scp>1.1</i> . New Phytologist, 2017, 216, 1205-1222.	3.5	59
10	Revolutionize Genetic Studies and Crop Improvement with High-Throughput and Genome-Scale CRISPR/Cas9 Gene Editing Technology. Molecular Plant, 2017, 10, 1141-1143.	3.9	19
11	Production of Guide RNAs in vitro and in vivo for CRISPR Using Ribozymes and RNA Polymerase II Promoters. Bio-protocol, 2017, 7, .	0.2	27
12	The Arabidopsis NRG2 Protein Mediates Nitrate Signaling and Interacts with and Regulates Key Nitrate Regulators. Plant Cell, 2016, 28, 485-504.	3.1	154
13	AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nature Communications, 2015, 6, 6274.	5.8	195
14	Nitrate foraging by <i>Arabidopsis</i> roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15267-15272.	3.3	202
15	Multiple Regulatory Elements in the Arabidopsis NIA1 Promoter Act Synergistically to Form a Nitrate Enhancer. Plant Physiology, 2010, 154, 423-432.	2.3	42
16	A Genetic Screen for Nitrate Regulatory Mutants Captures the Nitrate Transporter Gene <i>NRT1.1</i> . Plant Physiology, 2009, 151, 472-478.	2.3	191
17	Insights into the genomic nitrate response using genetics and the Sungear Software System. Journal of Experimental Botany, 2007, 58, 2359-2367.	2.4	71
18	Nitrite Acts as a Transcriptome Signal at Micromolar Concentrations in Arabidopsis Roots. Plant Physiology, 2007, 145, 1735-1745.	2.3	134

Rongchen Wang

#	Article	IF	CITATIONS
19	Genomic Analysis of the Nitrate Response Using a Nitrate Reductase-Null Mutant of Arabidopsis. Plant Physiology, 2004, 136, 2512-2522.	2.3	396
20	Microarray Analysis of the Nitrate Response in Arabidopsis Roots and Shoots Reveals over 1,000 Rapidly Responding Genes and New Linkages to Glucose, Trehalose-6-Phosphate, Iron, and Sulfate Metabolism Â. Plant Physiology, 2003, 132, 556-567.	2.3	611
21	Somatic and Germinal Excision Activities of the Arabidopsis Transposon Tag1 Are Controlled by Distinct Regulatory Sequences within Tag1. Plant Cell, 2001, 13, 1851-1863.	3.1	14
22	Functional Dissection of the cis-Acting Sequences of the Arabidopsis Transposable Element Tag1 Reveals Dissimilar Subterminal Sequence and Minimal Spacing Requirements for Transposition. Genetics, 2001, 157, 817-830.	1.2	17
23	The Arabidopsis Dual-Affinity Nitrate Transporter Gene <i>AtNRT1.1</i> (<i>CHL1</i>) Is Activated and Functions in Nascent Organ Development during Vegetative and Reproductive Growth. Plant Cell, 2001, 13, 1761-1777.	3.1	94