Giuseppe Vassalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5448293/publications.pdf

Version: 2024-02-01

471371 580701 1,956 27 17 25 citations h-index g-index papers 27 27 27 3313 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Supervised and unsupervised learning to define the cardiovascular risk of patients according to an extracellular vesicle molecular signature. Translational Research, 2022, , .	2.2	8
2	Microvesicles released from activated CD4 $<$ sup $>+<$ sup $>$ T cells alter microvascular endothelial cell function. European Journal of Clinical Investigation, 2022, , e13769.	1.7	3
3	Circulating extracellular vesicles are endowed with enhanced procoagulant activity in SARS-CoV-2 infection. EBioMedicine, 2021, 67, 103369.	2.7	61
4	Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovascular Research, 2020, 116, 383-392.	1.8	91
5	Role of somatic cell sources in the maturation degree of human induced pluripotent stem cell-derived cardiomyocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118538.	1.9	29
6	Exosomes: Beyond stem cells for cardiac protection and repair. Stem Cells, 2020, 38, 1387-1399.	1.4	40
7	Immune profiling of plasma-derived extracellular vesicles identifies Parkinson disease. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	45
8	Inflammatory extracellular vesicles prompt heart dysfunction via TRL4-dependent NF-κB activation. Theranostics, 2020, 10, 2773-2790.	4.6	39
9	Exosomal Expression of CXCR4 Targets Cardioprotective Vesicles to Myocardial Infarction and Improves Outcome after Systemic Administration. International Journal of Molecular Sciences, 2019, 20, 468.	1.8	68
10	Flow Cytometric Analysis of Extracellular Vesicles from Cell-conditioned Media. Journal of Visualized Experiments, 2019, , .	0.2	10
11	Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells. Stem Cells International, 2019, 2019, 1-15.	1.2	220
12	Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-A. Cardiovascular Research, 2018, 114, 992-1005.	1.8	178
13	ALDH1A3 Is the Key Isoform That Contributes to Aldehyde Dehydrogenase Activity and Affects in Vitro Proliferation in Cardiac Atrial Appendage Progenitor Cells. Frontiers in Cardiovascular Medicine, 2018, 5, 90.	1.1	19
14	Exosomes From Human Cardiac Progenitor Cells for Therapeutic Applications: Development of a GMP-Grade Manufacturing Method. Frontiers in Physiology, 2018, 9, 1169.	1.3	133
15	Exosomes for Intramyocardial Intercellular Communication. Stem Cells International, 2015, 2015, 1-10.	1.2	92
16	Additive effects of rapamycin and aspirin on dendritic cell allostimulatory capacity. Immunopharmacology and Immunotoxicology, 2015, 37, 434-441.	1.1	5
17	Comparison of clinical and angiographic prognostic risk scores in elderly patients presenting with acute coronary syndrome and referred for percutaneous coronary intervention. Swiss Medical Weekly, 2015, 145, w14049.	0.8	11
18	Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovascular Research, 2014, 103, 530-541.	1.8	601

#	Article	IF	CITATIONS
19	Dendritic Cell-Based Approaches for Therapeutic Immune Regulation in Solid-Organ Transplantation. Journal of Transplantation, 2013, 2013, 1-17.	0.3	19
20	Beneficial effects of sildenafil to alleviate pulmonary hypertension after 2 and 4â€week chronic hypoxia. FASEB Journal, 2008, 22, 1173.8.	0.2	0
21	Chronic hypoxia impaired tolerance to ischemia: attenuation by aeration and phosphodiesteraseâ€5 inhibition. FASEB Journal, 2008, 22, 1121.7.	0.2	O
22	Lentiviral Gene Transfer of the Chemokine Antagonist RANTES 9-68 Prolongs Heart Graft Survival. Transplantation, 2006, 81, 240-246.	0.5	18
23	Gene transfer of cytoprotective and immunomodulatory molecules for prevention of cardiac allograft rejection. European Journal of Cardio-thoracic Surgery, 2003, 24, 794-806.	0.6	16
24	Reduced Coronary Flow Reserve During Exercise in Cardiac Transplant Recipients. Circulation, 1997, 95, 607-613.	1.6	18
25	Angina Pectoris in Patients With Aortic Stenosis and Normal Coronary Arteries. Circulation, 1997, 95, 892-898.	1.6	130
26	Normalization of Abnormal Coronary Vasomotion by Calcium Antagonists in Patients With Hypertension. Circulation, 1996, 93, 1380-1387.	1.6	89
27	Reduced Epicardial Coronary Vasodilator Capacity in Patients With Left Ventricular Hypertrophy. Circulation, 1995, 91, 2916-2923.	1.6	13