
Paul J Dagdigian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5448111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Collisional Excitation and Non-LTE Modeling of Interstellar Chiral Propylene Oxide. Astrophysical Journal, 2022, 926, 3.	1.6	4
2	Collisional excitation of isotopologues of carbon monoxide by molecular hydrogen. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2214-2219.	1.6	3
3	Collisional excitation of deuterated hydroxyl (OD) by molecular hydrogen. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1987-1991.	1.6	5
4	The interaction of methylene with molecular hydrogen: potential energy surface and inelastic collisions. Molecular Physics, 2021, 119, .	0.8	1
5	Collisional excitation of methylene by molecular hydrogen. Monthly Notices of the Royal Astronomical Society, 2021, 508, 118-124.	1.6	4
6	Collisional excitation of NH by H2: Potential energy surface and scattering calculations. Journal of Chemical Physics, 2021, 155, 134303.	1.2	8
7	Collisional excitation of the formyl radical (HCO) by molecular hydrogen. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5361-5366.	1.6	3
8	Interaction of the HCO radical with molecular hydrogen: <i>Ab initio</i> potential energy surface and scattering calculations. Journal of Chemical Physics, 2020, 152, 224304.	1.2	5
9	Interaction of the H2S molecule with molecular hydrogen: Ab initio potential energy surface and scattering calculations. Journal of Chemical Physics, 2020, 152, 074307.	1.2	11
10	Collisional excitation of H2S by molecular hydrogen. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5239-5243.	1.6	6
11	Collisional excitation of C+(2P) spin-orbit levels by molecular hydrogen revisited. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 501, L38-L42.	1.2	1
12	Quantum statistical study of the C+ + OH → CO + H+/CO+ + H reaction: Reaction rate and product branching ratio at interstellar temperatures. Journal of Chemical Physics, 2019, 151, .	1.2	5
13	Hyperfine excitation of SH+ in collisions with para- and ortho-H2. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3427-3431.	1.6	12
14	Interaction of Chiral Propylene Oxide (CH ₃ CHCH ₂ O) with Helium: Potential Energy Surface and Scattering Calculations. ACS Earth and Space Chemistry, 2019, 3, 964-972.	1.2	18
15	Interaction of the SH+ ion with molecular hydrogen: Ab initio potential energy surface and scattering calculations. Journal of Chemical Physics, 2019, 150, 084308.	1.2	12
16	Calculation of the Rate of the C ⁺ Â+ÂHFÂ→ÂCF ⁺ Â+ÂH Reaction: Implications for Fluorine Chemistry in the Interstellar Medium. Astrophysical Journal, 2019, 872, 203.	1.6	4
17	Interaction of C2H with molecular hydrogen: <i>Ab initio</i> potential energy surface and scattering calculations. Journal of Chemical Physics, 2018, 148, 024304.	1.2	15
18	Experimental and theoretical investigation of the temperature dependent electronic quenching of O(1 <i>D</i>) atoms in collisions with Kr. Journal of Chemical Physics, 2018, 148, 124311.	1.2	12

#	Article	IF	CITATIONS
19	Collisional excitation of ArH+ by hydrogen atoms. Monthly Notices of the Royal Astronomical Society, 2018, 477, 802-807.	1.6	9
20	Hyperfine excitation of CH in collisions with atomic and molecular hydrogen. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5480-5486.	1.6	11
21	The effect of nonadiabaticity on the C+ + HF reaction. Journal of Chemical Physics, 2018, 149, 204309.	1.2	3
22	Hyperfine excitation of C2H in collisions with ortho- and para-H2. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3227-3231.	1.6	13
23	The interaction of NO(X2Î) with H2: <i>Ab initio</i> potential energy surfaces and bound states. Journal of Chemical Physics, 2017, 146, 114301.	1.2	17
24	Pressure broadening calculations for OH in collisions with argon: Rotational, vibrational, and electronic transitions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189, 105-111.	1.1	4
25	Theoretical investigation of rotationally inelastic collisions of CH(X2Î) with hydrogen atoms. Journal of Chemical Physics, 2017, 146, 224308.	1.2	10
26	Accurate transport properties for O(3 <i>P</i>)–H and O(3 <i>P</i>)–H2. Journal of Chemical Physics, 2016, 145, 164309.	1.2	11
27	Theoretical investigation of rotationally inelastic collisions of CH(X2Î) with molecular hydrogen. Journal of Chemical Physics, 2016, 145, 234305.	1.2	5
28	Ab initio potential energy surfaces describing the interaction of CH(X2Î) with H2. Journal of Chemical Physics, 2016, 145, 114301.	1.2	9
29	Quantum Scattering Calculations of Transport Properties for the H–N ₂ and H–CH ₄ Collision Pairs. Journal of Physical Chemistry A, 2016, 120, 7793-7799.	1.1	8
30	Resonances in rotationally inelastic scattering of NH3 and ND3 with H2. Journal of Chemical Physics, 2015, 143, 044312.	1.2	34
31	Theoretical investigation of the dynamics of O(1 <i>D</i> →3 <i>P</i>) electronic quenching by collision with Xe. Journal of Chemical Physics, 2015, 143, 054306.	1.2	7
32	Electronic quenching of O(1D) by Xe: Oscillations in the product angular distribution and their dependence on collision energy. Journal of Chemical Physics, 2015, 143, 054307.	1.2	4
33	Accurate transport properties for H–CO and H–CO2. Journal of Chemical Physics, 2015, 143, 054303.	1.2	7
34	Rotationally inelastic scattering of ND ₃ with H ₂ as a probe of the intermolecular potential energy surface. Molecular Physics, 2015, 113, 3925-3933.	0.8	18
35	Doppler-Resolved Kinetics of Saturation Recovery. Journal of Physical Chemistry A, 2015, 119, 7439-7450.	1.1	5
36	Combustion simulations with accurate transport properties for reactive intermediates. Combustion and Flame. 2015, 162, 2480-2486.	2.8	17

#	Article	IF	CITATIONS
37	Rotationally inelastic scattering of methyl radicals with Ar and N2. Journal of Chemical Physics, 2015, 142, 014306.	1.2	11
38	Rotationally inelastic scattering of OH by molecular hydrogen: Theory and experiment. Journal of Chemical Physics, 2015, 142, 204310.	1.2	34
39	Theoretical investigation of the relaxation of the bending mode of \${m CH}_2(ilde{X})\$ CH 2(X̃) by collisions with helium. Journal of Chemical Physics, 2014, 141, 214305.	1.2	2
40	Collision dynamics of symmetric top molecules: A comparison of the rotationally inelastic scattering of CD3 and ND3 with He. Journal of Chemical Physics, 2014, 140, 134308.	1.2	10
41	The interaction of OH(<i>X</i> 2Î) with H2: <i>Ab initio</i> potential energy surfaces and bound states. Journal of Chemical Physics, 2014, 141, 174309.	1.2	26
42	Transport Properties for Systems with Deep Potential Wells: H + O ₂ . Journal of Physical Chemistry A, 2014, 118, 11935-11942.	1.1	13
43	Differential and integral cross sections for the rotationally inelastic scattering of methyl radicals with H2 and D2. Journal of Chemical Physics, 2014, 140, 204318.	1.2	11
44	Theoretical investigation of intersystem crossing between the alfA11 and XlfB13 states of CH2 induced by collisions with helium. Journal of Chemical Physics, 2014, 141, 064312.	1.2	4
45	Rotationally inelastic scattering of CD3 and CH3 with He: comparison of velocity map-imaging data with quantum scattering calculations. Chemical Science, 2013, 4, 4199.	3.7	16
46	Theoretical investigation of collisional energy transfer in polyatomic intermediates. International Reviews in Physical Chemistry, 2013, 32, 229-265.	0.9	11
47	Exact quantum scattering calculations of transport properties: CH2(\$ilde{X}^3\$XÌf3 <i>B</i> 1,) Tj ETQq1 1 0.78	34314 rgB 1.2	T /Qyerlock 1
48	Exact quantum scattering calculations of transport properties for the H2O–H system. Journal of Chemical Physics, 2013, 139, 194309.	1.2	16
49	Theoretical study of the vibrational relaxation of the methyl radical in collisions with helium. Journal of Chemical Physics, 2013, 138, 104317.	1.2	10
50	Theoretical investigation of rotationally inelastic collisions of CH2(X) f) with helium. Journal of Chemical Physics, 2012, 136, 224306.	1.2	20
51	Resonances in rotationally inelastic scattering of OH(<i>X</i> 2Î) with helium and neon. Journal of Chemical Physics, 2012, 136, 144308.	1.2	24
52	Exact quantum scattering calculation of transport properties for free radicals: OH(<i>X</i> 2Î)–helium. Journal of Chemical Physics, 2012, 137, 094306.	1.2	11
53	Theoretical investigation of rotationally inelastic collisions of the methyl radical with helium. Journal of Chemical Physics, 2011, 135, 064306.	1.2	20
54	Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds. Analytical and Bioanalytical Chemistry, 2011, 400, 3193-3205.	1.9	51

#	Article	IF	CITATIONS
55	Theoretical investigation of rotationally inelastic collisions of CH2(ã) with helium. Journal of Chemical Physics, 2011, 134, 154307.	1.2	27
56	Depolarization in H ₂ O–He collisions. Molecular Physics, 2010, 108, 1159-1169.	0.8	13
57	Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds. Applied Optics, 2010, 49, C58.	2.1	15
58	State-to-state inelastic scattering of Stark-decelerated OH radicals with Ar atoms. Physical Chemistry Chemical Physics, 2010, 12, 10660.	1.3	57
59	Tensor cross sections and the collisional evolution of state multipoles: OH(XÎ2)–Ar. Journal of Chemical Physics, 2009, 130, 094303.	1.2	37
60	Experimental and Theoretical Study of Rotationally Inelastic Collisions of CN(<i>A</i> ² Î) with N ₂ . Journal of Physical Chemistry A, 2009, 113, 3922-3931.	1.1	7
61	Tensor cross sections and collisional depolarization of OH(X 2Î) in collisions with helium. Journal of Chemical Physics, 2009, 130, 164315.	1.2	40
62	Dependence of elastic depolarization cross sections on the potential: OH(X Î2)-Ar and NO(X Î2)-Ar. Journal of Chemical Physics, 2009, 130, 204304.	1.2	28
63	Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 15 and 1064 μm. Applied Optics, 2008, 47, G149.	2.1	19
64	Theoretical determination of rate constants for vibrational relaxation and reaction of OH(XÎ2,v=1) with O(P3) atoms. Journal of Chemical Physics, 2008, 129, 064306.	1.2	21
65	Femtosecond Laser-Induced Breakdown Spectroscopy of Trinitrotoluene. , 2007, , .		0
66	Femtosecond laser-induced breakdown spectroscopy of trinitrotoluene. , 2007, , .		0
67	Comparison of IR and UV cavity ring-down spectroscopy detection of transient intermediates: Pyrolysis of methyl azide to form methyleneimine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 67, 1019-1024.	2.0	5
68	Experimental and Theoretical Study of the Electronic Spectrum of the Methylene Amidogen Radical (H2CN): Verification of the2A1â†2B2Assignment. Journal of Physical Chemistry A, 2006, 110, 7826-7834.	1.1	17
69	Effect of Vibrational Excitation on the Collisional Removal of Free Radicals by Atoms:Â OH(v=1) + N. Journal of Physical Chemistry A, 2006, 110, 3388-3392.	1.1	3
70	TRANSIENT GAS-PHASE INTERMEDIATES IN THE DECOMPOSITION OF ENERGETIC MATERIALS. Advanced Series in Physical Chemistry, 2005, , 129-160.	1.5	2
71	Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 926-934.	1.5	28
72	Laser fluorescence study of the S(1D)+CD4 reaction: determination of the SD product internal state distribution. Chemical Physics Letters, 2005, 402, 265-269.	1.2	3

#	Article	IF	CITATIONS
73	Vibrational relaxation of OH by oxygen atoms. Chemical Physics Letters, 2005, 415, 1-5.	1.2	15
74	Determination of the internal state distribution of the SD product from the S(1D)+D2 reaction. Journal of Chemical Physics, 2005, 122, 024303.	1.2	10
75	Experimental and theoretical investigation of the 3sâ†2p transition in the BNe2 complex. Chemical Physics Letters, 2004, 392, 151-155.	1.2	2
76	Determination of oxygen atom concentrations by cavity ring-down spectroscopy. Chemical Physics Letters, 2004, 400, 374-378.	1.2	11
77	The Electronic Spectrum of Methyleneimine. Journal of Physical Chemistry A, 2004, 108, 4433-4439.	1.1	48
78	Vibrational energy transfer involving Renner–Teller levels of the NCO(X̃2Î) molecule. Chemical Physics Letters, 2003, 375, 532-539.	1.2	6
79	Electronic Spectrum of the Gallium Dimer. Journal of Physical Chemistry A, 2003, 107, 2642-2649.	1.1	26
80	Spectroscopic and Kinetic Investigation of Methylene Amidogen by Cavity Ring-Down Spectroscopy. Journal of Physical Chemistry A, 2003, 107, 2256-2263.	1.1	34
81	Kinetic modeling of the laser-induced breakdown spectroscopy plume from metallic lead. Applied Optics, 2003, 42, 5947.	2.1	23
82	Experimental and theoretical investigation of the AlH b 3Σâ^'–a 3Î electronic transition. Journal of Chemical Physics, 2003, 118, 10477-10484.	1.2	9
83	Laser fluorescence excitation spectroscopy of the GeAr van der Waals complex. Journal of Chemical Physics, 2003, 118, 1242-1252.	1.2	6
84	Quantum theory of vector correlations in vibrationally mediated photodissociation. Journal of Chemical Physics, 2002, 116, 7948-7956.	1.2	2
85	Laser spectroscopic study of the SiAr van der Waals complex. Journal of Chemical Physics, 2002, 116, 9239-9248.	1.2	9
86	Experimental and Theoretical Study of State-Resolved Electronically Inelastic Collisions of Highly Rotationally Excited CN(A2Î) with Argon and Helium:  The Role of Gateway Levels. Journal of Physical Chemistry A, 2002, 106, 8345-8354.	1.1	12
87	Observation of new electronic states of the Al–H2/D2 complex. Chemical Physics, 2002, 283, 5-16.	0.9	4
88	Electronic spectroscopy and excited state dynamics of the Al–H2/D2 complex. Faraday Discussions, 2001, 118, 387-404.	1.6	13
89	The 4s ↕3p Electronic Transition in Aluminum Atomâ~'Molecule Complexes:  Bound and Repulsive Excited States. Journal of Physical Chemistry A, 2001, 105, 11009-11017.	1.1	9
90	Free-Jet Electronic Spectroscopy of the PO2 Radical. Journal of Physical Chemistry A, 2001, 105, 7828-7833.	1.1	18

#	Article	IF	CITATIONS
91	Collisional Quenching and Vibrational Energy Transfer in the A2Σ+ Electronic State of the CF Radical. Journal of Physical Chemistry A, 2001, 105, 29-33.	1.1	8
92	Vibrationally mediated photodissociation of CH3Cl: the v=3 and 4 CH stretch overtone levels. Chemical Physics Letters, 2001, 350, 63-70.	1.2	17
93	Observation of the FeNC molecule by laser fluorescence excitation spectroscopy. Journal of Chemical Physics, 2001, 114, 2137-2143.	1.2	45
94	Fine-structure state resolved rotationally inelastic collisions of CH(A [sup 2]î",v=0) with Ar: A combined experimental and theoretical study. Journal of Chemical Physics, 2001, 114, 4479.	1.2	23
95	Experimental and theoretical investigation of the rotational structure of the Al–H2/D2 complex. Journal of Chemical Physics, 2001, 114, 8938-8947.	1.2	15
96	Experimental and theoretical study of ĥ-doublet resolved rotationally inelastic collisions of highly rotationally excited CH(A 2Δ,v=0) with Ar. Journal of Chemical Physics, 2001, 115, 800-809.	1.2	12
97	State-resolved rotationally inelastic collisions of highly rotationally excited CN(A 2Î) with helium: Influence of the interaction potential. Journal of Chemical Physics, 2001, 115, 8393-8402.	1.2	28
98	A joint theoretical–experimental investigation of the lower bound states of the NO(X 2Î)–Ar complex. Journal of Chemical Physics, 2000, 113, 73-85.	1.2	31
99	Laser fluorescence excitation spectroscopy of the CAr van der Waals complex. Journal of Chemical Physics, 2000, 113, 602-610.	1.2	10
100	Molecular beam study of the 6ΖX 6Δ electronic transition in FeCl. Journal of Chemical Physics, 2000, 112, 10221-10227.	1.2	18
101	Experimental study of rotationally inelastic collisions of AlH(A 1Î) with Ar: State-to-state rate constants and ĥ-doublet propensities. Journal of Chemical Physics, 2000, 113, 4124-4131.	1.2	15
102	Experimental and theoretical study of the electronic spectrum of the BAr2 complex: Transition to the excited valence B(2s2p2 2D) state. Journal of Chemical Physics, 2000, 112, 5037-5043.	1.2	14
103	Collisional Quenching and Energy Transfer of thez5DJoStates of the Fe Atom. Journal of Physical Chemistry A, 2000, 104, 6345-6350.	1.1	6
104	Potential energy surfaces for the CN(X 2Σ+,A 2Î)Ar system and inelastic scattering within the A state. Journal of Chemical Physics, 2000, 112, 781-791.	1.2	48
105	Experimental and theoretical study of rotationally inelastic collisions of highly rotationally excited CN(A 2Î) with Ar. Journal of Chemical Physics, 2000, 112, 4474-4484.	1.2	36
106	Doppler line shapes in the photolysis of laser excited, aligned molecules: Application to the vibrationally mediated photodissociation of HN3. Journal of Chemical Physics, 1999, 111, 151-162.	1.2	10
107	Laser fluorescence excitation spectra of the AINC and AICN isomers. Journal of Chemical Physics, 1999, 110, 220-228.	1.2	24
108	The effect of reagent translation on product internal energy distributions: Laser fluorescence study of Al+O2. Journal of Chemical Physics, 1999, 67, 3854.	1.2	68

#	Article	IF	CITATIONS
109	Electronic Spectroscopy of the Alâ^'CH4/CD4Complex. Journal of Physical Chemistry A, 1999, 103, 5910-5917.	1.1	15
110	Selective rotational energy transfer from individual ĥ-doublet levels of highly rotationally excited CN(A2Î). Chemical Physics Letters, 1998, 297, 506-514.	1.2	30
111	Electronic spectroscopy and excited state dynamics of the Al–N2 complex. Chemical Physics, 1998, 239, 207-221.	0.9	20
112	Photodissociation of CH stretch overtone excited CH3Cl and CHD2Cl(vCH=5): Cl spin–orbit branching and atomic fragment yields. Journal of Chemical Physics, 1998, 109, 7810-7820.	1.2	32
113	Electronic spectroscopy of the Al–H2 complex: Excited state dynamics and orbital alignment of the AlH(A 1Î) product. Journal of Chemical Physics, 1998, 109, 8920-8928.	1.2	29
114	Experimental and theoretical study of the AlNe complex. Journal of Chemical Physics, 1998, 108, 3522-3530.	1.2	26
115	Spin–orbit branching in the photofragmentation of HCl at long wavelength. Journal of Chemical Physics, 1998, 108, 4460-4466.	1.2	67
116	Fluorescence excitation and depletion spectroscopy of the BAr complex: Electronic states correlating with the excited valence B(2s2p2 2D) asymptote. Journal of Chemical Physics, 1997, 106, 6596-6606.	1.2	27
117	Inelastic collisions of fine structure and ĥ-doublet resolved rotational states of PH(A 3Î, v=0) with helium. Journal of Chemical Physics, 1997, 106, 7642-7653.	1.2	18
118	Fluorescence excitation spectroscopy of the Ar–HCO(X̃ 2A′,B̃ 2A′) van der Waals complex. Ja Chemical Physics, 1997, 107, 680-690.	ournal of 1.2	4
119	A collaborative theoretical and experimental study of the structure and electronic excitation spectrum of the Bar and Bar2 complexes. Journal of Chemical Physics, 1997, 106, 6320-6331.	1.2	33
120	Rotational analysis of the B̃2A′′â~'X̃2A′′ origin band of the CH2CFO radical. Journal of Chemical Ph 1997, 107, 9755-9758.	ysics, 1.2	13
121	The Photodissociation of Ground and Vibrationally Excited Halogenated Alkanes. Israel Journal of Chemistry, 1997, 37, 455-465.	1.0	16
122	Chemical reaction within the electronically excited B(2s22D)–H2 complex. Faraday Discussions, 1997, 108, 287-307.	1.6	24
123	Spectroscopic Study of Bâ^'Kr Nonbonding Interactions. Journal of Physical Chemistry A, 1997, 101, 3509-3513.	1.1	8
124	STATE-RESOLVED COLLISION-INDUCED ELECTRONIC TRANSITIONS. Annual Review of Physical Chemistry, 1997, 48, 95-123.	4.8	95
125	Nonbonding Interactions of the Boron Atom in the Excited 2s ² 3s ² S Rydberg and 2s2p ² ² D Valence States. ACS Symposium Series, 1997, , 122-133.	0.5	5
126	Photodissociation of vibrationally excited CH3Cl: modification of the dissociation dynamics. Chemical Physics Letters, 1997, 275, 499-505.	1.2	29

#	Article	IF	CITATIONS
127	EXPERIMENTAL STUDIES OF ROTATIONALLY INELASTIC STATE-RESOLVED COLLISIONS OF SMALL MOLECULAR FREE RADICALS. Advanced Series in Physical Chemistry, 1996, , 315-364.	1.5	24
128	Radiative and nonradiative decay of electronically excited NCO. Journal of Chemical Physics, 1996, 104, 8279-8291.	1.2	15
129	Laser fluorescence excitation spectroscopy of BNe electronic states correlating with the excited valence B(2s2p2 2D) atomic asymptote. Journal of Chemical Physics, 1996, 104, 599-606.	1.2	22
130	Stateâ€resolved inelastic collisions of single rotational, fineâ€structure, and ĥ doublet levels of NH(A 3Î) with helium: A combined experimental and theoretical study. Journal of Chemical Physics, 1996, 104, 1325-1337.	1.2	28
131	Observation of the weakly bound B(2s2p2 2D)–H2 complex by fluorescence depletion spectroscopy. Journal of Chemical Physics, 1996, 104, 8165-8168.	1.2	22
132	Product State Resolved Study of the Cl + (CH3)3CD Reaction:Â Comparison of the Dynamics of Abstraction of Primary versus Tertiary Hydrogens. The Journal of Physical Chemistry, 1996, 100, 4365-4374.	2.9	41
133	Radiative and Nonradiative Decay of the BH(b3Σ-) State: A Joint Experimental and Theoretical Study. The Journal of Physical Chemistry, 1996, 100, 5649-5653.	2.9	9
134	The rotational relaxation of NH(c 1Î) in collisions with Ar: A combined theoretical and experimental investigation. Journal of Chemical Physics, 1995, 102, 4069-4083.	1.2	28
135	Theoretical study of the interaction of AlH(X 1Σ+,A 1Î) with Ar: Potential energy surfaces and bend–stretch levels of the ArAlH(X,A) van der Waals complex. Journal of Chemical Physics, 1995, 102, 2413-2425.	1.2	23
136	Investigation of the effect of reagent CN rotational excitation on the dynamics of the CN+O2reaction. Journal of Chemical Physics, 1995, 103, 6479-6489.	1.2	20
137	Experimental investigation of weakly bound B(2p,3s)–H2/D2complexes through laser fluorescence excitation spectroscopy. Journal of Chemical Physics, 1995, 103, 7966-7974.	1.2	28
138	Fluorescence excitation spectroscopy and dynamics of the ArAlH(X 1Σ+,A 1Ì) van der Waals complex. Journal of Chemical Physics, 1995, 102, 2426-2439.	1.2	28
139	Product State Distributions and Angular Differential Cross Sections from Photoinitiated Reactions of Chlorine Atoms with Small Hydrocarbons. The Journal of Physical Chemistry, 1995, 99, 9843-9853.	2.9	76
140	Experimental and theoretical study of the B–Ne nonbonding interaction: The freeâ€boundB 2Σ+–X 2 electronic transition. Journal of Chemical Physics, 1995, 103, 2779-2786.	2Î 1.2	36
141	Predissociation in theÃ 2A' state of HNF (DNF): NH (ND) Photofragment excitation spectroscopy. Journal of Chemical Physics, 1994, 100, 4884-4893.	1.2	4
142	Observation and characterization of the ArBH(X 1Σ+,A 1Î) van der Waals complex through fluorescence excitation spectroscopy. Journal of Chemical Physics, 1994, 101, 2903-2913.	1.2	26
143	Potential energy surfaces for the interaction of BH(X 1Σ+,A 1Î) with Ar and a theoretical investigation of the stretchâ€bend levels of the ArBH(A) van der Waals molecule. Journal of Chemical Physics, 1994, 101, 2887-2902.	1.2	67
144	Potential energy surfaces for the interaction of CH(X 2Î,B 2Σâ^') with Ar and an assignment of the stretchâ€bend levels of the ArCH(B) van der Waals molecule. Journal of Chemical Physics, 1994, 101, 4547-4560.	1.2	55

#	Article	IF	CITATIONS
145	Bound–free B2Σ+ –X2Î, A2Σ+ emission in the BAr van der Waals complex. Canadian Journal of Chemistry, 1994, 72, 821-827.	0.6	18
146	On the generation of preferential ĥâ€doublet populations in the collisional relaxation of highly rotationally excited CH(X 2Î). Journal of Chemical Physics, 1994, 101, 7468-7479.	1.2	36
147	Radiative and Nonradiative Decay of Electronically Excited HNF and DNF. Israel Journal of Chemistry, 1994, 34, 25-32.	1.0	0
148	A joint experimental and theoretical study of A 2Î→X 2Σ+ electronic energy transfer in the CN molecule induced by collisions with helium. Journal of Chemical Physics, 1993, 98, 8580-8592.	1.2	52
149	Experimental and theoretical characterization of the BAr van der Waals complex: The X 2Î, A 2Σ+, and Bâ electronic states. Journal of Chemical Physics, 1993, 98, 8484-8495.	€‰2Σ+ 1.2	58
150	Photofragmentation excitation spectroscopy of the DNF molecule: Observation of the ND predissociation product. Journal of Chemical Physics, 1993, 98, 3554-3556.	1.2	5
151	Spectroscopy and excited state dynamics of the HNF (DNF) molecule. Journal of Chemical Physics, 1992, 96, 7333-7343.	1.2	13
152	Stateâ€resolved electronic quenching of NH(a 1Δ) by Xe and CO. Journal of Chemical Physics, 1992, 97, 4871-4880.	1.2	15
153	Determination of the internal state distribution of NO(X 2Î) produced in the O(3P)+NH(X 3Σâ^') reaction Journal of Chemical Physics, 1992, 97, 180-188.	[.] 1.2	15
154	Laser fluorescence study of the Pb+F2, Cl2 reactions: Internal state distribution of the PbCl product and radiative lifetimes of PbF(A,B) and PbCl(A). Journal of Chemical Physics, 1992, 96, 1030-1035.	1.2	13
155	Radiative and nonradiative decay of the NH(ND)A 3Πelectronic state: Predissociation induced by the5ΣⰒstate. Journal of Chemical Physics, 1991, 94, 1913-1922.	1.2	44
156	Predissociation of the c 1Πstate of NH (ND): The role of dipolar spin–spin coupling. Journal of Chemical Physics, 1991, 94, 2364-2367.	1.2	17
157	The vibronic state distribution of the NCO(X̃ 2Î) product from the CN+O2reaction. Journal of Chemical Physics, 1991, 95, 1696-1707.	1.2	40
158	Internal state distribution of OD produced from the O(3P)+ND2reaction. Journal of Chemical Physics, 1991, 95, 955-962.	1.2	29
159	Observation of highly excited bending levels in NCO(X̃ 2Ì). Journal of Chemical Physics, 1990, 93, 5448-5456.	1.2	48
160	A molecular beam study of the H+N3 reaction. Product NH internal state distribution and electronic state branching ratio. Journal of Chemical Physics, 1990, 93, 4033-4042.	1.2	11
161	Oneâ€color photolysis–ionization study of HN3: The N2 fragment internal energy distribution and μâ€vâ€J correlations. Journal of Chemical Physics, 1990, 93, 257-267.	1.2	47
162	Determination of the internal state distribution of NO produced from the H+NO2reaction. Journal of Chemical Physics, 1990, 92, 2389-2396.	1.2	23

#	Article	IF	CITATIONS
163	Energetics and spin selectivity in the infrared multiphoton dissociation HN3(X̃1A')→N2(X1Σg+)+NH(X3Σâ AIP Conference Proceedings, 1989, , .	`alî"). 0.3	0
164	Rotationally inelastic collisions of a molecule in a 1Δ electronic state: NH(a 1Δ). Journal of Chemical Physics, 1989, 91, 5316-5323.	1.2	28
165	Observation of NH(a 1Δ, v=1) from the H+N3 reaction. Journal of Chemical Physics, 1989, 90, 7603-7604.	1.2	13
166	The inelastic scattering of 2Î [case (b)] molecules and an understanding of the differing î› doublet propensities for molecules of ĩ€ vs ĩ€3 orbital occupancy. Journal of Chemical Physics, 1989, 91, 839-848.	1.2	130
167	Scaling relations in the rotational excitation of NH(X 3â´â^) N=0 by argon. Journal of Chemical Physics, 1989, 90, 6110-6115.	1.2	34
168	State resolved cross sections for rotationally inelastic collisions of NH2(X̃ 2B1) with helium. Journal of Chemical Physics, 1989, 90, 2617-2625.	1.2	24
169	Collisional transfer between and quenching of the 3p 3P and 5P states of the oxygen atom. Chemical Physics Letters, 1988, 148, 299-308.	1.2	55
170	Energetics and spin―and ĥâ€doublet selectivity in the infrared multiphoton dissociation HN3(XÌf 1A')→N2(X 1Σ+g)+NH(X3Σâ^',a 1Δ): Theory. Journal of Chemical Physics, 1988, 89, 1	. 38 8-1400). ⁷⁸
171	Clarification of the electronic asymmetry of î> doublets in 3î electronic states of diatomic molecules. Journal of Chemical Physics, 1987, 87, 7118-7124.	1.2	22
172	Rotational energy transfer within theB 3Îgv=3 manifold of molecular nitrogen. Journal of Chemical Physics, 1987, 87, 6915-6926.	1.2	34
173	Stateâ€resolved inelastic cross sections from CN A 2Î v=8 to X 2Σ+ v=12: Quenching of the even–odd alternation in the final rotational state populations. Journal of Chemical Physics, 1987, 87, 2045-2050.	1.2	61
174	Stateâ€ŧoâ€state collisional interelectronic and intraelectronic energy transfer involving CN A 2Î v=3 and X 2Σ+ v=7 rotational levels. Journal of Chemical Physics, 1986, 85, 7098-7105.	1.2	91
175	The Reaction of Spin–Orbit State-Selected Ca(PJ03) With CH3I, CH2I2, and SF6. Laser Chemistry, 1986, 6, 391-402.	0.5	21
176	Interference effects in rotational-state-resolved collisional energy transfer between the A2Πand X2Σ+ states of CN. Chemical Physics Letters, 1986, 125, 561-565.	1.2	35
177	Collisionless and collision-induced B-X emission from laser-excited CN A 2Î v = 10 rotational levels. Chemical Physics Letters, 1986, 131, 331-334.	1.2	12
178	Stateâ€resolved study of collisional energy transfer between A 2Î v=7 and X 2Σ+ v=11 rotation CN. Journal of Chemical Physics, 1986, 85, 3860-3868.	al levels of 1.2	: 84
179	Dependence of the chemiluminescence cross section on spinâ€orbit state for the reaction of Ca(3P0J) with alkyl bromides. Journal of Chemical Physics, 1986, 84, 4332-4340.	1.2	41
180	The effect of incident spinâ€orbit state on the chemiluminescent reactions of Ba(3DJ) with several oxidants. Journal of Chemical Physics, 1986, 85, 4453-4462.	1.2	18

#	Article	IF	CITATIONS
181	Rotationally inelastic collisions between a molecule in a 2S+1Σ electronic state and an openâ€shell target: General quantum analysis and experimental measurement of stateâ€resolved cross sections for CaCl(X 2Σ+)+NO(X 2Σ). Journal of Chemical Physics, 1986, 84, 1547-1553.	1.2	19
182	Inelastic collisions of CaCl(X 2Σ+) with Ar: A collaborative theoretical and experimental study. Journal of Chemical Physics, 1985, 83, 556-566.	1.2	29
183	Collisionâ€induced transitions between molecular hyperfine levels: Quantum formalism, propensity rules, and experimental study of CaBr(X 2Σ+)+Ar. Journal of Chemical Physics, 1985, 83, 2191-2200.	1.2	86
184	Spinâ€orbit effects in chemical reactions: The reaction of spinâ€orbit stateâ€selected Ca(3P0J) with Cl2, Br2, and CH3Cl. Journal of Chemical Physics, 1984, 81, 2375-2384.	1.2	43
185	Clarification of the electronic asymmetry in Îâ€state Î> doublets with some implications for molecular collisions. Journal of Chemical Physics, 1984, 80, 4325-4332.	1.2	136
186	Propensity rules in rotationally inelastic polar molecule collisions involving 2Σ+ molecules: CaCl(X 2Σ+)–CH3Cl. Journal of Chemical Physics, 1984, 81, 3347-3348.	1.2	12
187	Propensity rules in rotationally inelastic collisions of diatomic molecules in3Σ electronic states. Journal of Chemical Physics, 1983, 79, 302-310.	1.2	86
188	Effect of atomic spinâ€orbit state on reactivity: Reaction of stateâ€selected Ca(3P0J) with Cl2. Journal of Chemical Physics, 1983, 79, 2086-2088.	1.2	10
189	Singleâ€collision chemiluminescence study of the Ba(1S,3D)+NO2, N2O, O3reactions. Journal of Chemical Physics, 1983, 79, 5351-5359.	1.2	30
190	Laser fluorescence study of MgO formed from Mg(3s3p 3P0)+O2and N2O under singleâ€collision conditions. Journal of Chemical Physics, 1982, 76, 5375-5384.	1.2	37
191	A study of the reactions Ca(1S,3PO, and 1D)+N2O under singleâ€collision conditions and at higher pressures: Chemiluminescence cross sections, photon yields, and collisional energy transfer in CaO* by N2O. Journal of Chemical Physics, 1981, 74, 6178-6187.	1.2	59
192	Rotationally inelastic collisions of LiH with He. III. Experimental determination of stateâ€ŧoâ€state cross sections. Journal of Chemical Physics, 1980, 72, 6462-6465.	1.2	47
193	Validity of energy gap representations of rotationally inelastic cross sections between polar molecules. Journal of Chemical Physics, 1980, 73, 3797-3803.	1.2	15
194	The failure of rigid shell models for rotationally inelastic LiH–He collisions. Journal of Chemical Physics, 1980, 73, 1233-1237.	1.2	18
195	Measurement of the vibrational state dependence of the LiH A 1Σ+ dipole moment. Journal of Chemical Physics, 1980, 73, 2049-2051.	1.2	19
196	Chemiluminescence from the Ca(4s3d 1D)+O2 reaction: Absolute cross sections, photon yield, and CaO dissociation energy. Journal of Chemical Physics, 1980, 73, 176-182.	1.2	73
197	Experimental and theoretical study of rotationally inelastic polar molecule collisions:7LiH–HCN. Journal of Chemical Physics, 1980, 72, 6513-6520.	1.2	29
198	LiH stateâ€toâ€state rotationally inelastic cross sections in collisions with HCl and DCl. Journal of Chemical Physics, 1979, 71, 1670-1682.	1.2	54

#	Article	IF	CITATIONS
199	Visible chemiluminescence from the reaction of metastable Sr with N20: Absolute cross section and photon yield. Journal of Chemical Physics, 1978, 69, 1779-1781.	1.2	24
200	Timeâ€ofâ€flight velocity selection using pulsed tunable laser fluorescence detection. Review of Scientific Instruments, 1977, 48, 226-228.	0.6	24
201	Rotational alignment in inelastic collisions. Journal of Chemical Physics, 1977, 66, 4126-4132.	1.2	34
202	Determination of state resolved rotationally inelastic cross sections: LiH(j=1) –Ar. Journal of Chemical Physics, 1977, 67, 3829-3830.	1.2	47
203	Quantum interpretation of fully stateâ€selected rotationally inelastic collision experiments. Journal of Chemical Physics, 1977, 66, 59-66.	1.2	82
204	Laserâ€fluorescence study of the reactions of alkaline earth atoms with BrCN: Spectroscopic observation of the alkaline earth monocyanides. Journal of Chemical Physics, 1976, 65, 1320-1326.	1.2	42
205	Collisional excitation of isotopologs of H2S by molecular hydrogen: D2S and HDS. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	2