Guoqin Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/544783/publications.pdf

Version: 2024-02-01

		430874	501196
32	785	18	28
papers	citations	h-index	g-index
32	32	32	719
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dual Evolution in Defect and Morphology of Singleâ€Atom Dispersed Carbon Based Oxygen Electrocatalyst. Advanced Functional Materials, 2021, 31, 2010472.	14.9	78
2	In Situ Fabrication of Nano Porous NiO-Capped Ni3P film as Anode for Li-Ion Battery with Different Lithiation Path and Significantly Enhanced Electrochemical Performance. Electrochimica Acta, 2016, 220, 258-266.	5.2	64
3	Molecular Beam Epitaxy Scalable Growth of Waferâ€Scale Continuous Semiconducting Monolayer MoTe ₂ on Inert Amorphous Dielectrics. Advanced Materials, 2019, 31, e1901578.	21.0	58
4	On the oxidation behavior of (Zr,Nb)2Fe under simulated nuclear reactor conditions. Corrosion Science, 2016, 112, 718-723.	6.6	55
5	Chemically anchoring of TiO2 coating on OH-terminated Mg3(PO3)2 surface and its influence on the in vitro degradation resistance of Mg–Zn–Ca alloy. Applied Surface Science, 2014, 308, 38-42.	6.1	45
6	Enabling Argyrodite Sulfides as Superb Solidâ€6tate Electrolyte with Remarkable Interfacial Stability Against Electrodes. Energy and Environmental Materials, 2022, 5, 852-864.	12.8	43
7	A mechanism assessment for the anti-corrosion of zirconia coating under the condition of subcritical water corrosion. Corrosion Science, 2019, 152, 54-59.	6.6	38
8	The formation and stacking faults of Fe and Cr containing Laves phase in Zircaloy-4 alloy. Materials Letters, 2017, 191, 203-205.	2.6	32
9	Nano-porous hollow Li _{0.5} La _{0.5} TiO ₃ spheres and electronic structure modulation for ultra-fast H ₂ S detection. Journal of Materials Chemistry A, 2020, 8, 2376-2386.	10.3	32
10	Synergistic effect of cation ordered structure and grain boundary engineering on long-term cycling of Li0.35La0.55TiO3-based solid batteries. Journal of the European Ceramic Society, 2019, 39, 3332-3337.	5.7	31
11	Strong interplay between dopant and SnO2 in amorphous transparent (Sn, Nb)O2 anode with high conductivity in electrochemical cycling. Journal of Alloys and Compounds, 2018, 735, 2401-2409.	5.5	28
12	Surficial Structure Retention Mechanism for LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ in a Full Gradient Cathode. ACS Applied Materials & Distribution of the Company of the Control of the Cont	8.0	28
13	A designer fast Li-ion conductor Li6.25PS5.25Cl0.75 and its contribution to the polyethylene oxide based electrolyte. Applied Surface Science, 2019, 493, 1326-1333.	6.1	24
14	Formation of nanocrystalline \hat{l} -ZrH x in Zircoloy-4: Orientation relationship and twinning. Journal of Alloys and Compounds, 2016, 658, 494-499.	5.5	23
15	Near solution-level conductivity of polyvinyl alcohol based electrolyte and the application for fully compliant Al-air battery. Chemical Engineering Journal, 2022, 431, 134283.	12.7	23
16	Chemical diversity of iron species and structure evolution during the oxidation of C14 Laves phase Zr(Fe,Nb)2 in subcritical environment. Corrosion Science, 2020, 162, 108218.	6.6	21
17	Formation and fine-structures of nano-precipitates in ZIRLO. Journal of Alloys and Compounds, 2016, 687, 451-457.	5.5	18
18	Suppression on allotropic transformation of Sn planar anode with enhanced electrochemical performance. Applied Surface Science, 2018, 435, 1150-1158.	6.1	18

#	Article	IF	CITATIONS
19	Amorphous carbon shell on Si particles fabricated by carbonizing of polyphosphazene and enhanced performance as lithium ion battery anode. Materials Letters, 2016, 171, 63-67.	2.6	15
20	In situ atomic-scale engineering of the chemistry and structure of the grain boundaries region of Li3La2/3-TiO3. Scripta Materialia, 2020, 185, 134-139.	5.2	15
21	Two-pronged approach to regulate Li etching for a stable anode. Journal of Power Sources, 2020, 455, 227988.	7.8	14
22	Evolution of "Spinodal decomposition―like structures during the oxidation of Zr(Fe,Nb)2 under subcritical environment. Scripta Materialia, 2020, 187, 107-112.	5.2	13
23	Mechanism of enhanced H2S sensor ability based on emerging Li0.5La0.5TiO3-SnO2 core-shell structure. Sensors and Actuators B: Chemical, 2022, 352, 131054.	7.8	13
24	Size effect on the electrochemical reaction path and performance of nano size phosphorus rich skutterudite nickle phosphide. Journal of Alloys and Compounds, 2019, 781, 1059-1068.	5.5	11
25	Dominant growth of higher manganese silicide film on Si substrate by introducing a Si oxide capping layer. Journal of Alloys and Compounds, 2018, 740, 541-544.	5.5	10
26	"Mechanical–electrochemical―coupling structure and the application as a three-dimensional current collector for lithium metal anode. Applied Surface Science, 2021, 563, 150247.	6.1	10
27	Oxidation behavior and chemical evolution of architecturally arranged Zr/Si multilayer at high temperature. Surface and Coatings Technology, 2020, 399, 126205.	4.8	9
28	Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode. Journal of Materials Science and Technology, 2021, 76, 156-165.	10.7	6
29	Enabling <scp>Highâ€Performance</scp> Sodium Battery Anodes by Complete Reduction of Graphene Oxide and Cooperative Inâ€5itu Crystallization of Ultrafine <scp>SnO₂</scp> Nanocrystals. Energy and Environmental Materials, 2023, 6, .	12.8	6
30	Microstructural and mechanical evolution of amorphous Zr-Si with irradiation induced atomic reconfiguration and free volume variation. Surfaces and Interfaces, 2022, 30, 101890.	3.0	2
31	Zifâ€Derived Electrocatalysis: Dual Evolution in Defect and Morphology of Singleâ€Atom Dispersed Carbon Based Oxygen Electrocatalyst (Adv. Funct. Mater. 19/2021). Advanced Functional Materials, 2021, 31, 2170132.	14.9	1
32	On the thermal stability and oxidation resistance of Zr/X(Cr, Ni, Si) multilayer structure. Surface and Coatings Technology, 2022, 440, 128500.	4.8	1