
Staffan Persson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5447779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward a Systems Approach to Understanding Plant Cell Walls. Science, 2004, 306, 2206-2211.	6.0	1,090
2	Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8633-8638.	3.3	539
3	Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15566-15571.	3.3	506
4	The Cell Biology of Cellulose Synthesis. Annual Review of Plant Biology, 2014, 65, 69-94.	8.6	488
5	Coâ€expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant, Cell and Environment, 2009, 32, 1633-1651.	2.8	480
6	Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11417-11422.	3.3	300
7	PlaNet: Combined Sequence and Expression Comparisons across Plant Networks Derived from Seven Species Â. Plant Cell, 2011, 23, 895-910.	3.1	297
8	Cellulose Synthases and Synthesis in Arabidopsis. Molecular Plant, 2011, 4, 199-211.	3.9	281
9	POM-POM2/CELLULOSE SYNTHASE INTERACTING1 Is Essential for the Functional Association of Cellulose Synthase and Microtubules in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2012, 24, 163-177.	3.1	252
10	The Arabidopsis irregular xylem8 Mutant Is Deficient in Glucuronoxylan and Homogalacturonan, Which Are Essential for Secondary Cell Wall Integrity. Plant Cell, 2007, 19, 237-255.	3.1	251
11	A Mechanism for Sustained Cellulose Synthesis during Salt Stress. Cell, 2015, 162, 1353-1364.	13.5	245
12	Inositol signaling and plant growth. Trends in Plant Science, 2000, 5, 252-258.	4.3	238
13	The TPLATE Adaptor Complex Drives Clathrin-Mediated Endocytosis in Plants. Cell, 2014, 156, 691-704.	13.5	238
14	Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12866-12871.	3.3	228
15	<i>TRICHOME BIREFRINGENCE</i> and Its Homolog <i>AT5G01360</i> Encode Plant-Specific DUF231 Proteins Required for Cellulose Biosynthesis in Arabidopsis Â. Plant Physiology, 2010, 153, 590-602.	2.3	196
16	Transcriptional Coordination of the Metabolic Network in Arabidopsis. Plant Physiology, 2006, 142, 762-774.	2.3	178
17	Assembly of an Interactive Correlation Network for the Arabidopsis Genome Using a Novel Heuristic Clustering Algorithm Â. Plant Physiology, 2009, 152, 29-43.	2.3	174
18	Patterning and Lifetime of Plasma Membrane-Localized Cellulose Synthase Is Dependent on Actin Organization in Arabidopsis Interphase Cells Â. Plant Physiology, 2013, 162, 675-688.	2.3	171

#	Article	IF	CITATIONS
19	Building a plant cell wall at a glance. Journal of Cell Science, 2018, 131, .	1.2	170
20	CHITINASE-LIKE1/POM-POM1 and Its Homolog CTL2 Are Glucan-Interacting Proteins Important for Cellulose Biosynthesis in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 589-607.	3.1	158
21	Phosphatidylinositol 4,5-Bisphosphate Influences PIN Polarization by Controlling Clathrin-Mediated Membrane Trafficking in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 25, 4894-4911.	3.1	158
22	Carbon Supply and the Regulation of Cell Wall Synthesis. Molecular Plant, 2018, 11, 75-94.	3.9	158
23	Cellulose synthesis: a complex complex. Current Opinion in Plant Biology, 2008, 11, 252-257.	3.5	152
24	Live Cell Imaging Reveals Structural Associations between the Actin and Microtubule Cytoskeleton in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 2302-2313.	3.1	151
25	Genetic Evidence That Cellulose Synthase Activity Influences Microtubule Cortical Array Organization Â. Plant Physiology, 2008, 147, 1723-1734.	2.3	147
26	Arabidopsis Heterotrimeric G-protein Regulates Cell Wall Defense and Resistance to Necrotrophic Fungi. Molecular Plant, 2012, 5, 98-114.	3.9	141
27	GeneCAT—novel webtools that combine BLAST and co-expression analyses. Nucleic Acids Research, 2008, 36, W320-W326.	6.5	139
28	Subfunctionalization of Cellulose Synthases in Seed Coat Epidermal Cells Mediates Secondary Radial Wall Synthesis and Mucilage Attachment Â. Plant Physiology, 2011, 157, 441-453.	2.3	130
29	Large-Scale Co-Expression Approach to Dissect Secondary Cell Wall Formation Across Plant Species. Frontiers in Plant Science, 2011, 2, 23.	1.7	127
30	V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis. Nature Plants, 2015, 1, 15094.	4.7	127
31	Transcriptional control of ROS homeostasis by KUODA1 regulates cell expansion during leaf development. Nature Communications, 2014, 5, 3767.	5.8	118
32	Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis. Nature Communications, 2016, 7, 11656.	5.8	110
33	Expression atlas and comparative coexpression network analyses reveal important genes involved in the formation of lignified cell wall in <i>Brachypodium distachyon</i> . New Phytologist, 2017, 215, 1009-1025.	3.5	108
34	Phytohormones and the cell wall in Arabidopsis during seedling growth. Trends in Plant Science, 2010, 15, 291-301.	4.3	107
35	Cracking the elusive alignment hypothesis: the microtubule–cellulose synthase nexus unraveled. Trends in Plant Science, 2012, 17, 666-674.	4.3	106
36	Diversity of the protein disulfide isomerase family: Identification of breast tumor induced Hag2 and Hag3 as novel members of the protein family. Molecular Phylogenetics and Evolution, 2005, 36, 734-740.	1.2	103

#	Article	IF	CITATIONS
37	The impact of abiotic factors on cellulose synthesis. Journal of Experimental Botany, 2016, 67, 543-552.	2.4	99
38	Cellulose and callose synthesis and organization in focus, what's new?. Current Opinion in Plant Biology, 2016, 34, 9-16.	3.5	98
39	Plant Cytokinesis Is Orchestrated by the Sequential Action of the TRAPPII and Exocyst Tethering Complexes. Developmental Cell, 2014, 29, 607-620.	3.1	97
40	Beyond Genomics: Studying Evolution with Gene Coexpression Networks. Trends in Plant Science, 2017, 22, 298-307.	4.3	96
41	Cell Wall Heterogeneity in Root Development of Arabidopsis. Frontiers in Plant Science, 2016, 07, 1242.	1.7	93
42	The Ca2+ Status of the Endoplasmic Reticulum Is Altered by Induction of Calreticulin Expression in Transgenic Plants. Plant Physiology, 2001, 126, 1092-1104.	2.3	92
43	Toward the Storage Metabolome: Profiling the Barley Vacuole Â. Plant Physiology, 2011, 157, 1469-1482.	2.3	92
44	Cellulose-Microtubule Uncoupling Proteins Prevent Lateral Displacement of Microtubules during Cellulose Synthesis in Arabidopsis. Developmental Cell, 2016, 38, 305-315.	3.1	92
45	Plant cell shape: modulators and measurements. Frontiers in Plant Science, 2013, 4, 439.	1.7	91
46	BRASSINOSTEROID INSENSITIVE2 negatively regulates cellulose synthesis in <i>Arabidopsis</i> by phosphorylating cellulose synthase 1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3533-3538.	3.3	89
47	At the border: the plasma membrane-cell wall continuum. Journal of Experimental Botany, 2015, 66, 1553-1563.	2.4	82
48	Phylogenetic Analyses and Expression Studies Reveal Two Distinct Groups of Calreticulin Isoforms in Higher Plants. Plant Physiology, 2003, 133, 1385-1396.	2.3	73
49	Revisiting ancestral polyploidy in plants. Science Advances, 2017, 3, e1603195.	4.7	73
50	The companion of cellulose synthase 1 confers salt tolerance through a Tau-like mechanism in plants. Nature Communications, 2019, 10, 857.	5.8	71
51	Higher Plant Calreticulins Have Acquired Specialized Functions in Arabidopsis. PLoS ONE, 2010, 5, e11342.	1.1	69
52	Cellulose Synthesis and Cell Expansion Are Regulated by Different Mechanisms in Growing Arabidopsis Hypocotyls. Plant Cell, 2017, 29, 1305-1315.	3.1	67
53	Downregulation of the δ-Subunit Reduces Mitochondrial ATP Synthase Levels, Alters Respiration, and Restricts Growth and Gametophyte Development in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2792-2811.	3.1	66
54	Salt-Related MYB1 Coordinates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis. Plant Physiology, 2015, 169, 1027-1041.	2.3	66

#	Article	IF	CITATIONS
55	FamNet: A Framework to Identify Multiplied Modules Driving Pathway Expansion in Plants. Plant Physiology, 2016, 170, 1878-1894.	2.3	63
56	Complete substitution of a secondary cell wall with a primary cell wall in Arabidopsis. Nature Plants, 2018, 4, 777-783.	4.7	63
57	Cellulose Synthesis – Central Components and Their Evolutionary Relationships. Trends in Plant Science, 2019, 24, 402-412.	4.3	62
58	Functional Characterization of Arabidopsis Calreticulin1a: A Key Alleviator of Endoplasmic Reticulum Stress. Plant and Cell Physiology, 2008, 49, 912-924.	1.5	61
59	Transcriptional Wiring of Cell Wall-Related Genes in Arabidopsis. Molecular Plant, 2009, 2, 1015-1024.	3.9	60
60	Root hair growth: it's a one way street. F1000prime Reports, 2015, 7, 23.	5.9	60
61	Two Complementary Mechanisms Underpin Cell Wall Patterning during Xylem Vessel Development. Plant Cell, 2017, 29, 2433-2449.	3.1	59
62	A Transcriptional and Metabolic Framework for Secondary Wall Formation in Arabidopsis. Plant Physiology, 2016, 172, pp.01100.2016.	2.3	57
63	Differential Regulation of Clathrin and Its Adaptor Proteins during Membrane Recruitment for Endocytosis. Plant Physiology, 2016, 171, 215-229.	2.3	56
64	Co-expression of cell-wall related genes: new tools and insights. Frontiers in Plant Science, 2012, 3, 83.	1.7	55
65	Identification of a novel calreticulin isoform (Crt2) in human and mouse. Gene, 2002, 297, 151-158.	1.0	54
66	Tricarboxylic Acid Cycle Activity Regulates Tomato Root Growth via Effects on Secondary Cell Wall Production Â. Plant Physiology, 2010, 153, 611-621.	2.3	54
67	Change your Tplate, change your fate: plant CME and beyond. Trends in Plant Science, 2015, 20, 41-48.	4.3	54
68	The elaborate route for UDP-arabinose delivery into the Golgi of plants. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4261-4266.	3.3	52
69	Feeding the Walls: How Does Nutrient Availability Regulate Cell Wall Composition?. International Journal of Molecular Sciences, 2018, 19, 2691.	1.8	52
70	Cellulose synthase complexes display distinct dynamic behaviors during xylem transdifferentiation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6366-E6374.	3.3	52
71	The Cellulose Synthases Are Cargo of the TPLATE Adaptor Complex. Molecular Plant, 2018, 11, 346-349.	3.9	51
72	Impaired Cellulose Synthase Guidance Leads to Stem Torsion and Twists Phyllotactic Patterns in Arabidopsis. Current Biology, 2013, 23, 895-900.	1.8	50

#	Article	IF	CITATIONS
73	Three AtCesA6â€ ŀ ike members enhance biomass production by distinctively promoting cell growth in <i>Arabidopsis</i> . Plant Biotechnology Journal, 2018, 16, 976-988.	4.1	49
74	Cell wall integrity modulates <i>Arabidopsis thaliana</i> cell cycle gene expression in a cytokinin- and nitrate reductase-dependent manner. Development (Cambridge), 2018, 145, .	1.2	49
75	The FRIABLE1 Gene Product Affects Cell Adhesion in Arabidopsis. PLoS ONE, 2012, 7, e42914.	1.1	48
76	CESA TRAFFICKING INHIBITOR Inhibits Cellulose Deposition and Interferes with the Trafficking of Cellulose Synthase Complexes and Their Associated Proteins KORRIGAN1 and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1. Plant Physiology, 2015, 167, 381-393.	2.3	46
77	Laying down the bricks: logistic aspects of cell wall biosynthesis. Current Opinion in Plant Biology, 2008, 11, 647-652.	3.5	45
78	Live-cell imaging of the cytoskeleton in elongating cotton fibres. Nature Plants, 2019, 5, 498-504.	4.7	45
79	System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5741-E5749.	3.3	44
80	AUXIN RESPONSE FACTORS 6 and 17 control the flag leaf angle in rice by regulating secondary cell wall biosynthesis of lamina joints. Plant Cell, 2021, 33, 3120-3133.	3.1	41
81	Atkinesin-13A Modulates Cell-Wall Synthesis and Cell Expansion in Arabidopsis thaliana via the THESEUS1 Pathway. PLoS Genetics, 2014, 10, e1004627.	1.5	40
82	Novel Disease Susceptibility Factors for Fungal Necrotrophic Pathogens in Arabidopsis. PLoS Pathogens, 2015, 11, e1004800.	2.1	40
83	Connecting two arrays: the emerging role of actin-microtubule cross-linking motor proteins. Frontiers in Plant Science, 2015, 6, 415.	1.7	39
84	Current and future advances in fluorescence-based visualization of plant cell wall components and cell wall biosynthetic machineries. Biotechnology for Biofuels, 2021, 14, 78.	6.2	39
85	GhMYB7 promotes secondary wall cellulose deposition in cotton fibres by regulating <i>GhCesA</i> gene expression through three distinct <i>cis</i> â€elements. New Phytologist, 2021, 232, 1718-1737.	3.5	39
86	The connection of cytoskeletal network with plasma membrane and the cell wall. Journal of Integrative Plant Biology, 2015, 57, 330-340.	4.1	37
87	Primary wall cellulose synthase regulates shoot apical meristem mechanics and growth. Development (Cambridge), 2019, 146, .	1.2	36
88	An Update on Xylan Synthesis. Molecular Plant, 2012, 5, 769-771.	3.9	31
89	The 2′-O-methyladenosine nucleoside modification gene OsTRM13 positively regulates salt stress tolerance in rice. Journal of Experimental Botany, 2017, 68, 1479-1491.	2.4	31
90	Domestication of rice has reduced the occurrence of transposable elements within gene coding regions. BMC Genomics, 2017, 18, 55.	1.2	30

#	Article	IF	CITATIONS
91	Regulatory roles of phosphoinositides in membrane trafficking and their potential impact on cell-wall synthesis and re-modelling. Annals of Botany, 2014, 114, 1049-1057.	1.4	29
92	Cell cycleâ€regulated <scp>PLEIADE</scp> /At <scp>MAP</scp> 65â€3 links membrane and microtubule dynamics during plant cytokinesis. Plant Journal, 2016, 88, 531-541.	2.8	29
93	Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding. Journal of Genetics and Genomics, 2020, 47, 273-280.	1.7	29
94	Transition of primary to secondary cell wall synthesis. Science Bulletin, 2016, 61, 838-846.	4.3	28
95	Cellulose synthesis during cell plate assembly. Physiologia Plantarum, 2018, 164, 17-26.	2.6	27
96	A Golgi UDP-GlcNAc transporter delivers substrates for N-linked glycans and sphingolipids. Nature Plants, 2018, 4, 792-801.	4.7	27
97	Inhibition of TOR Represses Nutrient Consumption, Which Improves Greening after Extended Periods of Etiolation. Plant Physiology, 2018, 178, 101-117.	2.3	27
98	An integrated genomic and metabolomic framework for cell wall biology in rice. BMC Genomics, 2014, 15, 596.	1.2	26
99	Grass-Specific <i>EPAD1</i> Is Essential for Pollen Exine Patterning in Rice. Plant Cell, 2020, 32, 3961-3977.	3.1	26
100	Long-term single-cell imaging and simulations of microtubules reveal principles behind wall patterning during proto-xylem development. Nature Communications, 2021, 12, 669.	5.8	26
101	A G protein-coupled receptor-like module regulates cellulose synthase secretion from the endomembrane system in Arabidopsis. Developmental Cell, 2021, 56, 1484-1497.e7.	3.1	23
102	Xylan-based nanocompartments orchestrate plant vessel wall patterning. Nature Plants, 2022, 8, 295-306.	4.7	23
103	AtCSLD3 and GhCSLD3 mediate root growth and cell elongation downstream of the ethylene response pathway in Arabidopsis. Journal of Experimental Botany, 2018, 69, 1065-1080.	2.4	22
104	Structure of <i>Arabidopsis</i> CESA3 catalytic domain with its substrate UDP-glucose provides insight into the mechanism of cellulose synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
105	The Rice Actin-Binding Protein RMD Regulates Light-Dependent Shoot Gravitropism. Plant Physiology, 2019, 181, 630-644.	2.3	20
106	Diverging functions among calreticulin isoforms in higher plants. Plant Signaling and Behavior, 2011, 6, 905-910.	1.2	19
107	Paramutation-Like Interaction of T-DNA Loci in Arabidopsis. PLoS ONE, 2012, 7, e51651.	1.1	18
108	T-DNA-Induced Chromosomal Translocations in feronia and anxur2 Mutants Reveal Implications for the Mechanism of Collapsed Pollen Due to Chromosomal Rearrangements. Molecular Plant, 2014, 7, 1591-1594.	3.9	17

#	Article	IF	CITATIONS
109	The Toolbox to Study Protein–Protein Interactions in Plants. Critical Reviews in Plant Sciences, 2018, 37, 308-334.	2.7	16
110	Associations between phytohormones and cellulose biosynthesis in land plants. Annals of Botany, 2020, 126, 807-824.	1.4	16
111	AtTrm5a catalyses 1-methylguanosine and 1-methylinosine formation on tRNAs and is important for vegetative and reproductive growth in <i>Arabidopsis thaliana</i> . Nucleic Acids Research, 2019, 47, 883-898.	6.5	15
112	Overexpression of the Ca2+-binding protein calreticulin in the endoplasmic reticulum improves growth of tobacco cell suspensions (Nicotiana tabacum) in high-Ca2+ medium. Physiologia Plantarum, 2005, 123, 92-99.	2.6	14
113	The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6. Plant Signaling and Behavior, 2016, 11, e1135281.	1.2	14
114	A network-based framework for shape analysis enables accurate characterization of leaf epidermal cells. Nature Communications, 2021, 12, 458.	5.8	14
115	Brassinosteroids Influence Arabidopsis Hypocotyl Graviresponses through Changes in Mannans and Cellulose. Plant and Cell Physiology, 2021, 62, 678-692.	1.5	14
116	The OsJAZ1 degron modulates jasmonate signaling sensitivity during rice development. Development (Cambridge), 2019, 146, .	1.2	14
117	Cellulose squeezes through. Nature Chemical Biology, 2010, 6, 883-884.	3.9	13
118	Differential Regulation of Carbon Partitioning by the Central Growth Regulator Target of Rapamycin (TOR). Molecular Plant, 2013, 6, 1731-1733.	3.9	13
119	Sweet sorghum and Miscanthus : Two potential dedicated bioenergy crops in China. Journal of Integrative Agriculture, 2017, 16, 1236-1243.	1.7	13
120	Molecular and genetic pathways for optimizing spikelet development and grain yield. ABIOTECH, 2020, 1, 276-292.	1.8	13
121	Another brick in the wall. Science, 2015, 350, 156-157.	6.0	12
122	Not Just a Simple Sugar: Arabinose Metabolism and Function in Plants. Plant and Cell Physiology, 2021, 62, 1791-1812.	1.5	12
123	Secondary cell wall patterning—connecting the dots, pits and helices. Open Biology, 2022, 12, 210208.	1.5	12
124	Expression of bovine calmodulin in tobacco plants confers faster germination on saline media. Plant Science, 2004, 166, 1595-1604.	1.7	11
125	CytoSeg 2.0: automated extraction of actin filaments. Bioinformatics, 2020, 36, 2950-2951.	1.8	11
126	When a Day Makes a Difference. Interpreting Data from Endoplasmic Reticulum-Targeted Green Fluorescent Protein Fusions in Cells Grown in Suspension Culture. Plant Physiology, 2002, 128, 341-344.	2.3	10

#	Article	IF	CITATIONS
127	Co-ordination and divergence of cell-specific transcription and translation of genes in arabidopsis root cells. Annals of Botany, 2014, 114, 1109-1123.	1.4	10
128	Differentiation of Tracheary Elements in Sugarcane Suspension Cells Involves Changes in Secondary Wall Deposition and Extensive Transcriptional Reprogramming. Frontiers in Plant Science, 2020, 11, 617020.	1.7	10
129	CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen. Plant Journal, 2020, 103, 1858-1868.	2.8	10
130	Ectopic expression of OsJAZ6, which interacts with OsJAZ1, alters JA signaling and spikelet development in rice. Plant Journal, 2021, 108, 1083-1096.	2.8	10
131	Inferring gene functions through dissection of relevance networks: interleaving the intra- and inter-species views. Molecular BioSystems, 2012, 8, 2233.	2.9	9
132	Rice transcription factor MADS32 regulates floral patterning through interactions with multiple floral homeotic genes. Journal of Experimental Botany, 2021, 72, 2434-2449.	2.4	9
133	In vitro Microtubule Binding Assay and Dissociation Constant Estimation. Bio-protocol, 2016, 6, .	0.2	8
134	Quantitative analyses of the plant cytoskeleton reveal underlying organizational principles. Journal of the Royal Society Interface, 2014, 11, 20140362.	1.5	7
135	Quantification of Cytoskeletal Dynamics in Time‣apse Recordings. Current Protocols in Plant Biology, 2019, 4, e20091.	2.8	7
136	Synthetic biosensor for mapping dynamic responses and spatioâ€ŧemporal distribution of jasmonate in rice. Plant Biotechnology Journal, 2021, 19, 2392-2394.	4.1	7
137	Fluorescent cytoskeletal markers reveal associations between the actin and microtubule cytoskeleton in rice cells. Development (Cambridge), 2022, 149, .	1.2	7
138	Bright Fluorescent Vacuolar Marker Lines Allow Vacuolar Tracing Across Multiple Tissues and Stress Conditions in Rice. International Journal of Molecular Sciences, 2020, 21, 4203.	1.8	5
139	Cell Wall Biology: Dual Control of Cellulose Synthase Guidance. Current Biology, 2020, 30, R232-R234.	1.8	5
140	Transcript and Metabolite Profiling for the Evaluation of Tobacco Tree and Poplar as Feedstock for the Bio-based Industry. Journal of Visualized Experiments, 2014, , .	0.2	3
141	The Plasma Membrane and the Cell Wall. Plant Cell Monographs, 2011, , 57-85.	0.4	2
142	The ER and Cell Calcium. Plant Cell Monographs, 2006, , 251-278.	0.4	1
143	ANALYZING GENE COEXPRESSION DATA BY AN EVOLUTIONARY MODEL. , 2010, , .		0
144	Salt with a sweet tooth: galactan synthesis impacts salt tolerance in Arabidopsis. Molecular Plant, 2021, 14, 361-363.	3.9	0