
Masato Wakeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5447600/publications.pdf Version: 2024-02-01

MASATO WAREDA

#	Article	IF	CITATIONS
1	Relationship between local geometrical factors and mechanical properties for Cu–Zr amorphous alloys. Intermetallics, 2007, 15, 139-144.	3.9	201
2	Elastostatically induced structural disordering in amorphous alloys. Acta Materialia, 2008, 56, 5440-5450.	7.9	191
3	Atomic packing density and its influence on the properties of Cu–Zr amorphous alloys. Scripta Materialia, 2007, 57, 805-808.	5.2	165
4	Atomistic simulation of shear localization in Cu–Zr bulk metallic glass. Intermetallics, 2006, 14, 1033-1037.	3.9	124
5	Icosahedral clustering with medium-range order and local elastic properties of amorphous metals. Acta Materialia, 2010, 58, 3963-3969.	7.9	114
6	Controlled Rejuvenation of Amorphous Metals with Thermal Processing. Scientific Reports, 2015, 5, 10545.	3.3	110
7	Origin of the plasticity in bulk amorphous alloys. Journal of Materials Research, 2007, 22, 3087-3097.	2.6	98
8	Thermal rejuvenation in metallic glasses. Science and Technology of Advanced Materials, 2017, 18, 152-162.	6.1	82
9	Prediction of pressure-promoted thermal rejuvenation in metallic glasses. Npj Computational Materials, 2016, 2, .	8.7	67
10	Recovery of less relaxed state in Zr-Al-Ni-Cu bulk metallic glass annealed above glass transition temperature. Applied Physics Letters, 2013, 103, .	3.3	56
11	Heterogeneous structural changes correlated to local atomic order in thermal rejuvenation process of Cu-Zr metallic glass. Science and Technology of Advanced Materials, 2019, 20, 632-642.	6.1	40
12	Chemical misfit origin of solute strengthening in iron alloys. Acta Materialia, 2017, 131, 445-456.	7.9	36
13	Multiple shear banding in a computational amorphous alloy model. Applied Physics A: Materials Science and Processing, 2008, 91, 281-285.	2.3	26
14	An atomistically informed kinetic Monte Carlo model for predicting solid solution strengthening of body-centered cubic alloys. International Journal of Plasticity, 2019, 122, 319-337.	8.8	26
15	Pop-In Phenomenon as a Fundamental Plasticity Probed by Nanoindentation Technique. Materials, 2021, 14, 1879.	2.9	25
16	Effect of the Atomic Packing Density on the Structural Change Rate of Amorphous Alloys under Elastostatic Stress. Metals and Materials International, 2008, 14, 159-163.	3.4	20
17	Mechanical properties of Fe-rich Si alloy from Hamiltonian. Npj Computational Materials, 2017, 3, .	8.7	20
18	Homogeneous deformation of bulk amorphous alloys during elastostatic compression and its packing density dependence. Scripta Materialia, 2008, 59, 710-713.	5.2	18

MASATO WAKEDA

#	Article	IF	CITATIONS
19	Predictive modeling of Time-Temperature-Transformation diagram of metallic glasses based on atomistically-informed classical nucleation theory. Scientific Reports, 2017, 7, 7194.	3.3	15
20	Properties of high-density, well-ordered, and high-energy metallic glass phase designed by pressurized quenching. Applied Physics Letters, 2016, 109, .	3.3	14
21	Electron-irradiation-induced solid-state amorphization caused by thermal relaxation of lattice defects. Intermetallics, 2010, 18, 441-450.	3.9	12
22	Structural relaxation affecting shear-transformation avalanches in metallic glasses. Physical Review E, 2019, 100, 043002.	2.1	11
23	Atomic study on the interaction between superlattice screw dislocation and γ-Ni precipitate in γ′-Ni3Al intermetallics. Intermetallics, 2018, 102, 1-5.	3.9	10
24	High-pressure annealing driven nanocrystal formation in Zr50Cu40Al10 metallic glass and strength increase. Communications Materials, 2020, 1, .	6.9	10
25	Anomalous solution softening by unique energy balance mediated by kink mechanism in tungsten-rhenium alloys. Journal of Applied Physics, 2020, 127, .	2.5	9
26	Atomistic Study of Interaction between Screw Dislocation and Si Atom in Fe-Si Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 409-414.	0.4	8
27	Multiscale analyses of the interaction between dislocation and Σ9 symmetric tilt grain boundaries in Fe–Si bicrystals by nanoindentation technique. International Journal of Plasticity, 2021, 145, 103047.	8.8	8
28	Theoretical Prediction of Macroscopic Yield Strength for Fe Alloy Based on Atomistic Study. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80, 197-205.	0.4	7
29	Effects of Atomic Deviatoric Distortion on Local Glass Transition of Metallic Glasses. Materials Transactions, 2005, 46, 2848-2855.	1.2	6
30	Influence of Size and Number of Nanocrystals on Shear Band Formation in Amorphous Alloys. Materials Transactions, 2007, 48, 1001-1006.	1.2	6
31	Atomistic Formation Mechanism of Multiple Shear Bands in Amorphous Metals. Zairyo/Journal of the Society of Materials Science, Japan, 2008, 57, 119-125.	0.2	6
32	Atomistic study on simultaneous achievement of partial crystallization and rejuvenated glassy structure in thermal process of metallic glasses. Philosophical Magazine, 2022, 102, 1209-1230.	1.6	6
33	Local Deformation Behavior of the Copper Harmonic Structure near Grain Boundaries Investigated through Nanoindentation. Materials, 2021, 14, 5663.	2.9	3
34	Mechanics of Amorphous Metals (Elastic-Plastic Finite Element Analyses Using Inhomogeneous Defects) Tj ETQq Engineers, Part A, 2013, 79, 1807-1817.	0 0 0 rgB 0.2	T /Overlock 10 2
35	Atomistic Study on Medium-Range Order Structures in Amorphous Metals. Zairyo/Journal of the Society of Materials Science, Japan, 2015, 64, 156-162.	0.2	2
36	Mechanical Properties and Deformation Mechanism of Metallic Glasses. Zairyo/Journal of the Society	0.2	2

Mechanical Properties and Deformation Mechanism of Metallic Glasses. Zairyo/Journal of the Society of Materials Science, Japan, 2009, 58, 199-204. 36

3

MASATO WAKEDA

#	Article	IF	CITATIONS
37	MeV Electron Irradiation Induced Solid-State Amorphization (SSA) in B2 Intermetallic Compounds. Zairyo/Journal of the Society of Materials Science, Japan, 2013, 62, 185-190.	0.2	2
38	Computational Relationship of Deformation Behavior and Materials Strength of Amorphous Alloys to Short-Ranged Local Structures. Materials Science Forum, 2007, 539-543, 1911-1916.	0.3	1
39	Shear Banding Analyses of Amorphous Alloys with Crystalline Particles. Materials Science Forum, 2007, 561-565, 1323-1328.	0.3	1
40	Enhancement of Plasticity of Highly Density-Fluctuated Cu-Zr Amorphous Alloy. Materials Transactions, 2010, 51, 1504-1509.	1.2	1
41	Temperature Dependence of Viscosity in Supercooled Liquid of Cu-Zr Bulk Metallic Glass by Molecular Dynamics. Zairyo/Journal of the Society of Materials Science, Japan, 2013, 62, 172-178.	0.2	1
42	Thermal Rejuvenation in Metallic Glasses. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 185-190.	0.2	1
43	Existence of Local Network Structure in Binary Amorphous Metals and its Contribution to Elastic Properties. Advanced Materials Research, 0, 89-91, 604-608.	0.3	0
44	Numerical Study on Shear Deformation of Cu-Zr Metallic Glass - Molecular Dynamics Simulation and Radial Basis Function Analysis Zairyo/Journal of the Society of Materials Science, Japan, 2015, 64, 163-168.	0.2	0
45	Relaxation Behavior and Heterogeneous Structures of Metallic Glasses. Zairyo/Journal of the Society of Materials Science, Japan, 2021, 70, 374-380.	0.2	0
46	707 Thermoelastic Finite Element Stress Analysis in Two-Dimensional Functionally Graded Material Nose Cone to Thermal Stress Relaxation The Proceedings of Autumn Conference of Tohoku Branch, 2010, 2010.46, 205-206.	0.0	0
47	Interaction analyses between substitutional solutes and carbon near the dislocation core in bcc-Fe. The Proceedings of the Computational Mechanics Conference, 2017, 2017.30, 162.	0.0	Ο