
Dalton J Surmeier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5447310/publications.pdf Version: 2024-02-01

DALTON L SUDMELED

#	Article	IF	CITATIONS
1	Modulation of Striatal Projection Systems by Dopamine. Annual Review of Neuroscience, 2011, 34, 441-466.	10.7	1,334
2	Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity. Science, 2008, 321, 848-851.	12.6	1,036
3	A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types. Cell, 2008, 135, 738-748.	28.9	1,007
4	D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neurosciences, 2007, 30, 228-235.	8.6	973
5	Dopaminergic Modulation of Neuronal Excitability in the Striatum and Nucleus Accumbens. Annual Review of Neuroscience, 2000, 23, 185-215.	10.7	823
6	†Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature, 2007, 447, 1081-108	3627.8	792
7	Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature, 2010, 468, 696-700.	27.8	717
8	Selective neuronal vulnerability in Parkinson disease. Nature Reviews Neuroscience, 2017, 18, 101-113.	10.2	711
9	Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nature Neuroscience, 2006, 9, 251-259.	14.8	678
10	Coordinated Expression of Dopamine Receptors in Neostriatal Medium Spiny Neurons. Journal of Neuroscience, 1996, 16, 6579-6591.	3.6	676
11	Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science, 2017, 357, 1255-1261.	12.6	600
12	Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature, 1999, 401, 272-276.	27.8	591
13	Negative feedback control of neuronal activity by microglia. Nature, 2020, 586, 417-423.	27.8	520
14	D ₂ Dopamine Receptors in Striatal Medium Spiny Neurons Reduce L-Type Ca ²⁺ Currents and Excitability via a Novel PLCβ1–IP ₃ –Calcineurin-Signaling Cascade. Journal of Neuroscience, 2000, 20, 8987-8995.	3.6	460
15	Dopaminergic Control of Corticostriatal Long-Term Synaptic Depression in Medium Spiny Neurons Is Mediated by Cholinergic Interneurons. Neuron, 2006, 50, 443-452.	8.1	451
16	Pharmacological Rescue of Mitochondrial Deficits in iPSC-Derived Neural Cells from Patients with Familial Parkinson's Disease. Science Translational Medicine, 2012, 4, 141ra90.	12.4	444
17	Thalamic Gating of Corticostriatal Signaling by Cholinergic Interneurons. Neuron, 2010, 67, 294-307.	8.1	401
18	Re-emergence of striatal cholinergic interneurons in movement disorders. Trends in Neurosciences, 2007, 30, 545-553.	8.6	400

#	Article	IF	CITATIONS
19	Dichotomous Anatomical Properties of Adult Striatal Medium Spiny Neurons. Journal of Neuroscience, 2008, 28, 10814-10824.	3.6	395
20	Recurrent Collateral Connections of Striatal Medium Spiny Neurons Are Disrupted in Models of Parkinson's Disease. Journal of Neuroscience, 2008, 28, 5504-5512.	3.6	351
21	Robust Pacemaking in Substantia Nigra Dopaminergic Neurons. Journal of Neuroscience, 2009, 29, 11011-11019.	3.6	340
22	Determinants of dopaminergic neuron loss in Parkinson's disease. FEBS Journal, 2018, 285, 3657-3668.	4.7	251
23	Disruption of mitochondrial complex I induces progressive parkinsonism. Nature, 2021, 599, 650-656.	27.8	247
24	G-Protein-Coupled Receptor Modulation of Striatal CaV1.3 L-Type Ca2+ Channels Is Dependent on a Shank-Binding Domain. Journal of Neuroscience, 2005, 25, 1050-1062.	3.6	245
25	Corticostriatal and Thalamostriatal Synapses Have Distinctive Properties. Journal of Neuroscience, 2008, 28, 6483-6492.	3.6	245
26	Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia. Nature Communications, 2014, 5, 5316.	12.8	245
27	D ₂ Dopamine Receptors Reduce N-Type Ca ²⁺ Currents in Rat Neostriatal Cholinergic Interneurons Through a Membrane-Delimited, Protein-Kinase-C-Insensitive Pathway. Journal of Neurophysiology, 1997, 77, 1003-1015.	1.8	241
28	Calcium, ageing, and neuronal vulnerability in Parkinson's disease. Lancet Neurology, The, 2007, 6, 933-938.	10.2	241
29	Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nature Neuroscience, 2007, 10, 1458-1466.	14.8	233
30	RCS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nature Neuroscience, 2006, 9, 832-842.	14.8	227
31	Differential Excitability and Modulation of Striatal Medium Spiny Neuron Dendrites. Journal of Neuroscience, 2008, 28, 11603-11614.	3.6	211
32	Neuronal vulnerability, pathogenesis, and Parkinson's disease. Movement Disorders, 2013, 28, 41-50.	3.9	199
33	D ₁ /D ₅ Dopamine Receptor Activation Differentially Modulates Rapidly Inactivating and Persistent Sodium Currents in Prefrontal Cortex Pyramidal Neurons. Journal of Neuroscience, 2001, 21, 2268-2277.	3.6	198
34	Calcium homeostasis, selective vulnerability and Parkinson's disease. Trends in Neurosciences, 2009, 32, 249-256.	8.6	197
35	D2 Dopamine Receptor-Mediated Modulation of Voltage-Dependent Na+ Channels Reduces Autonomous Activity in Striatal Cholinergic Interneurons. Journal of Neuroscience, 2004, 24, 10289-10301.	3.6	192
36	Cholinergic Suppression of KCNQ Channel Currents Enhances Excitability of Striatal Medium Spiny Neurons. Journal of Neuroscience, 2005, 25, 7449-7458.	3.6	191

#	Article	IF	CITATIONS
37	Impaired TrkB Receptor Signaling Underlies Corticostriatal Dysfunction in Huntington's Disease. Neuron, 2014, 83, 178-188.	8.1	186
38	Calcium, cellular aging, and selective neuronal vulnerability in Parkinson's disease. Cell Calcium, 2010, 47, 175-182.	2.4	184
39	M4 Muscarinic Receptor Signaling Ameliorates Striatal Plasticity Deficits in Models of L-DOPA-Induced Dyskinesia. Neuron, 2015, 88, 762-773.	8.1	183
40	Calcium, Bioenergetics, and Neuronal Vulnerability in Parkinson's Disease. Journal of Biological Chemistry, 2013, 288, 10736-10741.	3.4	179
41	Calcium Entry and Â-Synuclein Inclusions Elevate Dendritic Mitochondrial Oxidant Stress in Dopaminergic Neurons. Journal of Neuroscience, 2013, 33, 10154-10164.	3.6	174
42	The indirect pathway of the nucleus accumbens shell amplifies neuropathic pain. Nature Neuroscience, 2016, 19, 220-222.	14.8	168
43	FGF acts as a co-transmitter through adenosine A2A receptor to regulate synaptic plasticity. Nature Neuroscience, 2008, 11, 1402-1409.	14.8	167
44	Calcium and Parkinson's disease. Biochemical and Biophysical Research Communications, 2017, 483, 1013-1019.	2.1	164
45	HCN channelopathy in external globus pallidus neurons in models of Parkinson's disease. Nature Neuroscience, 2011, 14, 85-92.	14.8	160
46	HCN2 and HCN1 Channels Govern the Regularity of Autonomous Pacemaking and Synaptic Resetting in Globus Pallidus Neurons. Journal of Neuroscience, 2004, 24, 9921-9932.	3.6	158
47	Transmitter Modulation of Slow, Activity-Dependent Alterations in Sodium Channel Availability Endows Neurons with a Novel Form of Cellular Plasticity. Neuron, 2003, 39, 793-806.	8.1	153
48	Dopamine and synaptic plasticity in dorsal striatal circuits controlling action selection. Current Opinion in Neurobiology, 2009, 19, 621-628.	4.2	150
49	Muscarinic modulation of a transient K+ conductance in rat neostriatal neurons. Nature, 1990, 344, 240-242.	27.8	148
50	Neuronal vulnerability, pathogenesis, and Parkinson's disease. Movement Disorders, 2013, 28, 715-724.	3.9	145
51	Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson's disease. Nature Neuroscience, 2012, 15, 1414-1421.	14.8	144
52	Parkinson's Disease Is Not Simply a Prion Disorder. Journal of Neuroscience, 2017, 37, 9799-9807.	3.6	144
53	CaV1.3-selective L-type calcium channel antagonists as potential new therapeutics for Parkinson's disease. Nature Communications, 2012, 3, 1146.	12.8	139
54	Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nature Neuroscience, 2014, 17, 832-840.	14.8	139

#	Article	IF	CITATIONS
55	Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington's disease. Nature Medicine, 2019, 25, 1131-1142.	30.7	139
56	Convergent cortical innervation of striatal projection neurons. Nature Neuroscience, 2013, 16, 665-667.	14.8	137
57	Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons. Nature Neuroscience, 2003, 6, 258-266.	14.8	135
58	The Origins of Oxidant Stress in Parkinson's Disease and Therapeutic Strategies. Antioxidants and Redox Signaling, 2011, 14, 1289-1301.	5.4	132
59	Synaptically driven state transitions in distal dendrites of striatal spiny neurons. Nature Neuroscience, 2011, 14, 881-888.	14.8	131
60	Muscarinic Modulation of Striatal Function and Circuitry. Handbook of Experimental Pharmacology, 2012, , 223-241.	1.8	127
61	Dopaminergic modulation of striatal networks in health and Parkinson's disease. Current Opinion in Neurobiology, 2014, 29, 109-117.	4.2	127
62	Striatal synapses, circuits, and Parkinson's disease. Current Opinion in Neurobiology, 2018, 48, 9-16.	4.2	124
63	Heterosynaptic Regulation of External Globus Pallidus Inputs to the Subthalamic Nucleus by the Motor Cortex. Neuron, 2015, 85, 364-376.	8.1	111
64	Corticostriatal synaptic adaptations in Huntington's disease. Current Opinion in Neurobiology, 2015, 33, 53-62.	4.2	110
65	Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway?. Current Opinion in Neurobiology, 2005, 15, 312-318.	4.2	109
66	Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson's disease. Behavioural Brain Research, 2012, 230, 309-316.	2.2	108
67	Serotonergic modulation of hyperpolarization-activated current in acutely isolated rat dorsal root ganglion neurons. Journal of Physiology, 1999, 518, 507-523.	2.9	106
68	Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress. Journal of Clinical Investigation, 2018, 128, 2266-2280.	8.2	106
69	Delayed Rectifier Currents in Rat Clobus Pallidus Neurons Are Attributable to Kv2.1 and Kv3.1/3.2 K ⁺ Channels. Journal of Neuroscience, 1999, 19, 6394-6404.	3.6	103
70	Nav1.6 Sodium Channels Are Critical to Pacemaking and Fast Spiking in Globus Pallidus Neurons. Journal of Neuroscience, 2007, 27, 13552-13566.	3.6	103
71	What causes the death of dopaminergic neurons in Parkinson's disease?. Progress in Brain Research, 2010, 183, 59-77.	1.4	102
72	Physiological Phenotype and Vulnerability in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009290-a009290.	6.2	97

#	Article	IF	CITATIONS
73	Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nature Neuroscience, 2020, 23, 15-20.	14.8	97
74	MEF-2 regulates activity-dependent spine loss in striatopallidal medium spiny neurons. Molecular and Cellular Neurosciences, 2010, 44, 94-108.	2.2	96
75	A molecular basis for the increased vulnerability of substantia nigra dopamine neurons in aging and Parkinson's disease. Movement Disorders, 2010, 25, S63-70.	3.9	94
76	Thalamic Contributions to Basal Ganglia-Related Behavioral Switching and Reinforcement. Journal of Neuroscience, 2011, 31, 16102-16106.	3.6	94
77	RGS9-2 modulates D2 dopamine receptor-mediated Ca2+ channel inhibition in rat striatal cholinergic interneurons. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16339-16344.	7.1	93
78	Molecular adaptations of striatal spiny projection neurons during levodopa-induced dyskinesia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4578-4583.	7.1	93
79	Increased Lysosomal Exocytosis Induced by Lysosomal Ca ²⁺ Channel Agonists Protects Human Dopaminergic Neurons from α-Synuclein Toxicity. Journal of Neuroscience, 2019, 39, 5760-5772.	3.6	93
80	Cholinergic Interneurons Amplify Thalamostriatal Excitation of Striatal Indirect Pathway Neurons in Parkinson's Disease Models. Neuron, 2019, 101, 444-458.e6.	8.1	82
81	Antagonizing L-type Ca2+ Channel Reduces Development of Abnormal Involuntary Movement in the Rat Model of L-3,4-Dihydroxyphenylalanine-Induced Dyskinesia. Biological Psychiatry, 2009, 65, 518-526.	1.3	78
82	Sirt3 protects dopaminergic neurons from mitochondrial oxidative stress. Human Molecular Genetics, 2017, 26, 1915-1926.	2.9	76
83	Calcium, mitochondrial dysfunction and slowing the progression of Parkinson's disease. Experimental Neurology, 2017, 298, 202-209.	4.1	73
84	Unique Properties of R-Type Calcium Currents in Neocortical and Neostriatal Neurons. Journal of Neurophysiology, 2000, 84, 2225-2236.	1.8	69
85	Brain networks in Huntington disease. Journal of Clinical Investigation, 2011, 121, 484-492.	8.2	69
86	Cryopreservation Maintains Functionality of Human iPSC Dopamine Neurons and Rescues Parkinsonian Phenotypes InÂVivo. Stem Cell Reports, 2017, 9, 149-161.	4.8	66
87	The role of dopamine in modulating the structure and function of striatal circuits. Progress in Brain Research, 2010, 183, 148-167.	1.4	65
88	Striatal cholinergic interneurons and Parkinson's disease. European Journal of Neuroscience, 2018, 47, 1148-1158.	2.6	65
89	Dopaminergic modulation of striatal function and Parkinson's disease. Journal of Neural Transmission, 2019, 126, 411-422.	2.8	65
90	Strain-Specific Regulation of Striatal Phenotype in Drd2-eGFP BAC Transgenic Mice. Journal of Neuroscience, 2012, 32, 9124-9132.	3.6	64

6

#	Article	IF	CITATIONS
91	α-Synuclein-Dependent Calcium Entry Underlies Differential Sensitivity of Cultured SN and VTA Dopaminergic Neurons to a Parkinsonian Neurotoxin. ENeuro, 2017, 4, ENEURO.0167-17.2017.	1.9	64
92	Tolerability of isradipine in early Parkinson's disease: A pilot dose escalation study. Movement Disorders, 2010, 25, 2863-2866.	3.9	62
93	Determinants of seeding and spreading of α-synuclein pathology in the brain. Science Advances, 2020, 6,	10.3	61
94	Hydration Status Regulates Sodium Flux and Inflammatory Pathways through Epithelial Sodium Channel (ENaC) in the Skin. Journal of Investigative Dermatology, 2015, 135, 796-806.	0.7	58
95	The pathology roadmap in Parkinson disease. Prion, 2013, 7, 85-91.	1.8	56
96	Parkinson's Disease Subtypes: Critical Appraisal and Recommendations. Journal of Parkinson's Disease, 2021, 11, 395-404.	2.8	56
97	Sodium channel Na _x is a regulator in epithelial sodium homeostasis. Science Translational Medicine, 2015, 7, 312ra177.	12.4	53
98	Regulation of dendritic calcium release in striatal spiny projection neurons. Journal of Neurophysiology, 2013, 110, 2325-2336.	1.8	48
99	Calcium, Bioenergetics, and Parkinson's Disease. Cells, 2020, 9, 2045.	4.1	46
100	Locus coeruleus anchors a trisynaptic circuit controlling fear-induced suppression of feeding. Neuron, 2021, 109, 823-838.e6.	8.1	45
101	CNTNAP2 stabilizes interneuron dendritic arbors through CASK. Molecular Psychiatry, 2018, 23, 1832-1850.	7.9	44
102	Selective neuronal vulnerability in Parkinson's disease. Progress in Brain Research, 2020, 252, 61-89.	1.4	43
103	Selective blockade of a slowly inactivating potassium current in striatal neurons by (2) 6-chloro-APB hydrobromide (SKF82958). Synapse, 1998, 29, 213-224.	1.2	39
104	Defects in mRNA Translation in LRRK2-Mutant hiPSC-Derived Dopaminergic Neurons Lead to Dysregulated Calcium Homeostasis. Cell Stem Cell, 2020, 27, 633-645.e7.	11.1	38
105	Parkinson's disease: Is it a consequence of human brain evolution?. Movement Disorders, 2019, 34, 453-459.	3.9	37
106	Interneuronal Nitric Oxide Signaling Mediates Post-synaptic Long-Term Depression of Striatal Glutamatergic Synapses. Cell Reports, 2015, 13, 1336-1342.	6.4	33
107	Delayed Spine Pruning of Direct Pathway Spiny Projection Neurons in a Mouse Model of Parkinson's Disease. Frontiers in Cellular Neuroscience, 2019, 13, 32.	3.7	33
108	Adenosine A2a receptor antagonists attenuate striatal adaptations following dopamine depletion. Neurobiology of Disease, 2012, 45, 409-416.	4.4	32

#	Article	IF	CITATIONS
109	A Feud that Wasn't: Acetylcholine Evokes Dopamine Release in the Striatum. Neuron, 2012, 75, 1-3.	8.1	31
110	Pedunculopontine glutamatergic neurons control spike patterning in substantia nigra dopaminergic neurons. ELife, 2017, 6, .	6.0	30
111	Cholinergic Interneurons Amplify Corticostriatal Synaptic Responses in the Q175 Model of Huntington's Disease. Frontiers in Systems Neuroscience, 2016, 10, 102.	2.5	29
112	Maladaptive Downregulation of Autonomous Subthalamic Nucleus Activity following the Loss of Midbrain Dopamine Neurons. Cell Reports, 2019, 28, 992-1002.e4.	6.4	29
113	Striatal Information Signaling and Integration in Globus Pallidus: Timing Matters. NeuroSignals, 2005, 14, 281-289.	0.9	28
114	Structure–Activity Relationship of N,N′-Disubstituted Pyrimidinetriones as Ca _V 1.3 Calcium Channel-Selective Antagonists for Parkinson's Disease. Journal of Medicinal Chemistry, 2013, 56, 4786-4797.	6.4	28
115	Early dysfunction and progressive degeneration of the subthalamic nucleus in mouse models of Huntington's disease. ELife, 2016, 5, .	6.0	28
116	Isradipine plasma pharmacokinetics and exposure–response in early Parkinson's disease. Annals of Clinical and Translational Neurology, 2021, 8, 603-612.	3.7	27
117	Activation of the dorsal, but not the ventral, hippocampus relieves neuropathic pain in rodents. Pain, 2021, 162, 2865-2880.	4.2	27
118	Mutant huntingtin enhances activation of dendritic Kv4 K+ channels in striatal spiny projection neurons. ELife, 2019, 8, .	6.0	27
119	Dopamine and working memory mechanisms in prefrontal cortex. Journal of Physiology, 2007, 581, 885-885.	2.9	26
120	Striatal Kir2 K+ channel inhibition mediates the antidyskinetic effects of amantadine. Journal of Clinical Investigation, 2020, 130, 2593-2601.	8.2	26
121	Striatal synaptic adaptations in Parkinson's disease. Neurobiology of Disease, 2022, 167, 105686.	4.4	26
122	Nitric oxide regulates synaptic transmission between spiny projection neurons. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17636-17641.	7.1	25
123	WAVE1 in neurons expressing the D1 dopamine receptor regulates cellular and behavioral actions of cocaine. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1395-1400.	7.1	25
124	The pedunclopontine nucleus and Parkinson's disease. Neurobiology of Disease, 2019, 128, 3-8.	4.4	25
125	Excitatory VTA to DH projections provide a valence signal to memory circuits. Nature Communications, 2020, 11, 1466.	12.8	24
126	Cholinergic modulation of striatal nitric oxideâ€producing interneurons. European Journal of Neuroscience, 2019, 50, 3713-3731.	2.6	23

#	Article	IF	CITATIONS
127	Adaptive alterations in the mesoaccumbal network after peripheral nerve injury. Pain, 2021, 162, 895-906.	4.2	23
128	Haloperidol Selectively Remodels Striatal Indirect Pathway Circuits. Neuropsychopharmacology, 2017, 42, 963-973.	5.4	22
129	Reâ€Analysis of the <scp>STEADYâ€PD II</scp> Trial—Evidence for Slowing the Progression of Parkinson's Disease. Movement Disorders, 2022, 37, 334-342.	3.9	20
130	Mitochondrial oxidant stress mediates methamphetamine neurotoxicity in substantia nigra dopaminergic neurons. Neurobiology of Disease, 2021, 156, 105409.	4.4	18
131	Intracellular Uncaging of cGMP with Blue Light. ACS Chemical Neuroscience, 2017, 8, 2139-2144.	3.5	16
132	Targeting the pedunculopontine nucleus in Parkinson's disease: Time to go back to the drawing board. Movement Disorders, 2018, 33, 1871-1875.	3.9	16
133	Functional segregation of voltage-activated calcium channels in motoneurons of the dorsal motor nucleus of the vagus. Journal of Neurophysiology, 2015, 114, 1513-1520.	1.8	14
134	The roles of connectivity and neuronal phenotype in determining the pattern of α-synuclein pathology in Parkinson's disease. Neurobiology of Disease, 2022, 168, 105687.	4.4	14
135	Enhanced striatopallidal gammaâ€aminobutyric acid (GABA) _A receptor transmission in mouse models of huntington's disease. Movement Disorders, 2019, 34, 684-696.	3.9	13
136	A Single Amino Acid Determines the Selectivity and Efficacy of Selective Negative Allosteric Modulators of CaV1.3 L-Type Calcium Channels. ACS Chemical Biology, 2020, 15, 2539-2550.	3.4	13
137	Physiological involvement of presynaptic Lâ€ŧype voltageâ€dependent calcium channels in GABA release of cerebellar molecular layer interneurons. Journal of Neurochemistry, 2020, 155, 390-402.	3.9	12
138	Transient Activation of GABAB Receptors Suppresses SK Channel Currents in Substantia Nigra Pars Compacta Dopaminergic Neurons. PLoS ONE, 2016, 11, e0169044.	2.5	11
139	α-Synuclein at the Synaptic Gate. Neuron, 2010, 65, 3-4.	8.1	9
140	Genetic Dissection of Horizontal Cell Inhibitory Signaling in Mice in Complete Darkness In Vivo. , 2015, 56, 3132.		9
141	Seeking progress in disease modification in Parkinson disease. Parkinsonism and Related Disorders, 2021, 90, 134-141.	2.2	9
142	A Lethal Convergence of Dopamine and Calcium. Neuron, 2009, 62, 163-164.	8.1	8
143	CalDAG-GEFI mediates striatal cholinergic modulation of dendritic excitability, synaptic plasticity and psychomotor behaviors. Neurobiology of Disease, 2021, 158, 105473.	4.4	8
144	"The Little Engine that Could― Neuron, 2003, 39, 5-6	8.1	7

eThe Little Engine that Could〕 Neuron, 2003, 39, 5-6.

8.1

#	Article	IF	CITATIONS
145	Pathway‧pecific Remodeling of Thalamostriatal Synapses in a Mouse Model of Parkinson's Disease. Movement Disorders, 2022, 37, 1164-1174.	3.9	7
146	Impaired striatal function in Huntington's disease is due to aberrant p75NTR signaling. Rare Diseases (Austin, Tex), 2014, 2, e968482.	1.8	6
147	Enhanced GABAergic Inhibition of Cholinergic Interneurons in the zQ175+/â^ Mouse Model of Huntington's Disease. Frontiers in Systems Neuroscience, 2020, 14, 626412.	2.5	6
148	Neurochemical characterization of the striatum and the nucleus accumbens in L-type Cav1.3 channels knockout mice. Neurochemistry International, 2012, 60, 229-232.	3.8	4
149	Peering into the Dendritic Machinery of Striatal Medium Spiny Neurons. Neuron, 2004, 44, 401-402.	8.1	3
150	Beyond Just Connectivity — Neuronal Activity Drives αâ€ S ynuclein Pathology. Movement Disorders, 2021, 36, 1487-1488.	3.9	3
151	Palladium-Catalyzed α-Arylation of Cyclic β-Dicarbonyl Compounds for the Synthesis of Ca _V 1.3 Inhibitors. ACS Omega, 2022, 7, 14252-14263.	3.5	2
152	Homeostatic regulation of dopaminergic neurons without dopamine. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13103-13104.	7.1	1
153	Balancing excitation, inhibition and endocannabinoids (Commentary on Ademark <i>etÂal.</i>). European Journal of Neuroscience, 2009, 29, 31-31.	2.6	1
154	Characterization of CNTNAP2 nanostructures on interneuronal dendrites. Molecular Psychiatry, 2018, 23, 1831-1831.	7.9	0