
Takeshi Ichinohe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5447205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5354-5359.	7.1	1,224
2	Inflammasome recognition of influenza virus is essential for adaptive immune responses. Journal of Experimental Medicine, 2009, 206, 79-87.	8.5	605
3	Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nature Immunology, 2010, 11, 404-410.	14.5	544
4	Severe Acute Respiratory Syndrome Coronavirus Viroporin 3a Activates the NLRP3 Inflammasome. Frontiers in Microbiology, 2019, 10, 50.	3.5	457
5	Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nature Medicine, 2006, 12, 466-472.	30.7	271
6	Synthetic Double-Stranded RNA Poly(I:C) Combined with Mucosal Vaccine Protects against Influenza Virus Infection. Journal of Virology, 2005, 79, 2910-2919.	3.4	254
7	Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17963-17968.	7.1	226
8	Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nature Communications, 2014, 5, 4713.	12.8	181
9	Encephalomyocarditis Virus Viroporin 2B Activates NLRP3 Inflammasome. PLoS Pathogens, 2012, 8, e1002857.	4.7	167
10	Response of host inflammasomes to viral infection. Trends in Microbiology, 2015, 23, 55-63.	7.7	167
11	Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nature Communications, 2019, 10, 4624.	12.8	123
12	Crossâ€Protection against H5N1 Influenza Virus Infection Is Afforded by Intranasal Inoculation with Seasonal Trivalent Inactivated Influenza Vaccine. Journal of Infectious Diseases, 2007, 196, 1313-1320.	4.0	122
13	IL-1R signaling in dendritic cells replaces pattern-recognition receptors in promoting CD8+ T cell responses to influenza A virus. Nature Immunology, 2013, 14, 246-253.	14.5	122
14	Measles Virus V Protein Inhibits NLRP3 Inflammasome-Mediated Interleukin-1β Secretion. Journal of Virology, 2011, 85, 13019-13026.	3.4	112
15	Herpes Simplex Virus 1 VP22 Inhibits AIM2-Dependent Inflammasome Activation to Enable Efficient Viral Replication. Cell Host and Microbe, 2018, 23, 254-265.e7.	11.0	109
16	Intranasal immunization with H5N1 vaccine plus Poly I:Poly C12U, a Toll-like receptor agonist, protects mice against homologous and heterologous virus challenge. Microbes and Infection, 2007, 9, 1333-1340.	1.9	87
17	The RNA- and TRIM25-Binding Domains of Influenza Virus NS1 Protein Are Essential for Suppression of NLRP3 Inflammasome-Mediated Interleukin-1β Secretion. Journal of Virology, 2016, 90, 4105-4114.	3.4	85
18	High ambient temperature dampens adaptive immune responses to influenza A virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3118-3125.	7.1	83

Такезні Існілоне

#	Article	IF	CITATIONS
19	TLR7 mediated viral recognition results in focal type I interferon secretion by dendritic cells. Nature Communications, 2017, 8, 1592.	12.8	70
20	Polyl:polyC12U adjuvant-combined intranasal vaccine protects mice against highly pathogenic H5N1 influenza virus variants. Vaccine, 2009, 27, 6276-6279.	3.8	61
21	Protection against influenza virus infection by intranasal administration of hemagglutinin vaccine with chitin microparticles as an adjuvant. Journal of Medical Virology, 2005, 75, 130-136.	5.0	55
22	Zymosan enhances the mucosal adjuvant activity of poly(I:C) in a nasal influenza vaccine. Journal of Medical Virology, 2010, 82, 476-484.	5.0	52
23	Intranasal administration of adjuvant-combined recombinant influenza virus HA vaccine protects mice from the lethal H5N1 virus infection. Microbes and Infection, 2006, 8, 2706-2714.	1.9	51
24	Protection against influenza virus infection by intranasal administration of C3d-fused hemagglutinin. Vaccine, 2003, 21, 4532-4538.	3.8	48
25	Respective roles of TLR, RIG-I and NLRP3 in influenza virus infection and immunity: impact on vaccine design. Expert Review of Vaccines, 2010, 9, 1315-1324.	4.4	44
26	Intranasal administration of adjuvantâ€combined vaccine protects monkeys from challenge with the highly pathogenic influenza A H5N1 virus. Journal of Medical Virology, 2010, 82, 1754-1761.	5.0	41
27	Innate sensors of influenza virus: clues to developing better intranasal vaccines. Expert Review of Vaccines, 2008, 7, 1435-1445.	4.4	36
28	Two Conserved Amino Acids within the NSs of Severe Fever with Thrombocytopenia Syndrome Phlebovirus Are Essential for Anti-interferon Activity. Journal of Virology, 2018, 92, .	3.4	35
29	Induction of crossâ€protective immunity against influenza A virus H5N1 by an intranasal vaccine with extracts of mushroom mycelia. Journal of Medical Virology, 2010, 82, 128-137.	5.0	34
30	Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis. Journal of Clinical Investigation, 2017, 127, 3784-3795.	8.2	32
31	Influenza Virus-Induced Oxidized DNA Activates Inflammasomes. IScience, 2020, 23, 101270.	4.1	29
32	Development of a mucosal vaccine for influenza viruses: preparation for a potential influenza pandemic. Expert Review of Vaccines, 2007, 6, 193-201.	4.4	28
33	Protection against influenza virus infection by intranasal vaccine with surf clam microparticles (SMP) as an adjuvant. Journal of Medical Virology, 2006, 78, 954-963.	5.0	26
34	Prophylactic effects of chitin microparticles on highly pathogenic H5N1 influenza virus. Journal of Medical Virology, 2007, 79, 811-819.	5.0	21
35	Development of mucosal adjuvants for intranasal vaccine for H5N1 influenza viruses. Therapeutics and Clinical Risk Management, 2009, 5, 125.	2.0	20
36	Chlamydia pneumoniae exploits adipocyte lipid chaperone FABP4 to facilitate fat mobilization and intracellular growth in murine adipocytes. Biochemical and Biophysical Research Communications, 2018, 495, 353-359.	2.1	20

Такезні Існілоне

#	Article	IF	CITATIONS
37	Identification of U11snRNA as an endogenous agonist of TLR7-mediated immune pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23653-23661.	7.1	16
38	Oral Bacteria Combined with an Intranasal Vaccine Protect from Influenza A Virus and SARS-CoV-2 Infection. MBio, 2021, 12, e0159821.	4.1	13
39	Inflammasomes in antiviral immunity: clues for influenza vaccine development. Clinical and Experimental Vaccine Research, 2014, 3, 5.	2.2	11
40	Consecutive inoculations of influenza virus vaccine and poly(I:C) protects mice against homologous and heterologous virus challenge. Vaccine, 2017, 35, 1001-1007.	3.8	11
41	Cytidine deaminase enables Toll-like receptor 8 activation by cytidine or its analogs. International Immunology, 2019, 31, 167-173.	4.0	9
42	Skewed endosomal RNA responses from TLR7 to TLR3 in RNase T2-deficient macrophages. International Immunology, 2021, 33, 479-490.	4.0	9
43	Induction of lung CD8 + T cell responses by consecutive inoculations of a poly(I:C) influenza vaccine. Vaccine, 2017, 35, 6620-6626.	3.8	8
44	The Antimalarial Compound Atovaquone Inhibits Zika and Dengue Virus Infection by Blocking E Protein-Mediated Membrane Fusion. Viruses, 2020, 12, 1475.	3.3	8
45	Role of Microbiota in Antiviral Protection: Microbiota and Influenza. Kagaku To Seibutsu, 2021, 59, 130-136.	0.0	0