Annette I Birkhold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5446814/publications.pdf Version: 2024-02-01

ANNETTE L RIPKHOLD

#	Article	IF	CITATIONS
1	4D Flat Panel Conebeam CTA for Analysis of the Angioarchitecture of Cerebral AVMs with a Novel Software Prototype. American Journal of Neuroradiology, 2022, 43, 102-109.	1.2	3
2	Learning-based occupational x-ray scatter estimation. Physics in Medicine and Biology, 2022, 67, 075001.	1.6	5
3	XDose: toward online cross-validation of experimental and computational X-ray dose estimation. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 1-10.	1.7	3
4	Deep Learning Compatible Differentiable X-ray Projections for Inverse Rendering. Informatik Aktuell, 2021, , 290-295.	0.4	3
5	Biopolymer segmentation from CLSM microscopy images using a convolutional neural network. Proceedings in Applied Mathematics and Mechanics, 2021, 20, e202000188.	0.2	2
6	Deep action learning enables robust 3D segmentation of body organs in various CT and MRI images. Scientific Reports, 2021, 11, 3311.	1.6	10
7	X-Ray Scatter Estimation Using Deep Splines. IEEE Transactions on Medical Imaging, 2021, 40, 2272-2283.	5.4	8
8	Effects of Long-Term Sclerostin Deficiency on Trabecular Bone Mass and Adaption to Limb Loading Differ in Male and Female Mice. Calcified Tissue International, 2020, 106, 415-430.	1.5	13
9	A NanoFE simulation-based surrogate machine learning model to predict mechanical functionality of protein networks from live confocal imaging. Computational and Structural Biotechnology Journal, 2020, 18, 2774-2788.	1.9	6
10	4D Flat Panel Conebeam CTA for In Vivo Imaging of the Microvasculature of the Human Cortex with a Novel Software Prototype. American Journal of Neuroradiology, 2020, 41, 976-979.	1.2	4
11	Decoding rejuvenating effects of mechanical loading on skeletal aging using in vivo μCT imaging and deep learning. Acta Biomaterialia, 2020, 106, 193-207.	4.1	7
12	Simultaneous Estimation of X-Ray Back-Scatter and Forward-Scatter Using Multi-task Learning. Lecture Notes in Computer Science, 2020, , 199-208.	1.0	2
13	Tenfold your Photons. Informatik Aktuell, 2020, , 113-118.	0.4	1
14	Fully-Automatic CT Data Preparation for Interventional X-Ray Skin Dose Simulation. Informatik Aktuell, 2020, , 125-130.	0.4	2
15	Physicsâ€driven learning of xâ€ray skin dose distribution in interventional procedures. Medical Physics, 2019, 46, 4654-4665.	1.6	16
16	Pitfalls in interventional X-ray organ dose assessment—combined experimental and computational phantom study: application to prostatic artery embolization. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1859-1869.	1.7	7
17	Quantitative and Qualitative Comparison of 4D-DSA with 3D-DSA Using Computational Fluid Dynamics Simulations in Cerebral Aneurysms. American Journal of Neuroradiology, 2019, 40, 1505-1510.	1.2	7

18 The plastid skeleton: a source of ideas in the nano range. , 2019, , 163-166.

#	Article	IF	CITATIONS
19	Bewegung ohne Gelenke: (Wie) geht das?. , 2019, , 22-31.		Ο
20	Das Plastidenskelett: ein Ideengeber im Nanobereich. , 2019, , 163-166.		0
21	Movement Without Joints: (How) Does It Work?. , 2019, , 22-31.		0
22	A machine learning pipeline for internal anatomical landmark embedding based on a patient surface model. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 53-61.	1.7	7
23	Effects of Tissue Material Properties on X-Ray Image, Scatter and Patient Dose A Monte Carlo Simulation. Informatik Aktuell, 2019, , 270-275.	0.4	1
24	Pediatric Patient Surface Model Atlas Generation and X-Ray Skin Dose Estimation. Informatik Aktuell, 2019, , 122-127.	0.4	0
25	Structure and function of the musculoskeletal ovipositor system of an ichneumonid wasp. BMC Zoology, 2018, 3, .	0.3	14
26	Featureâ€based Classification of Protein Networks using Confocal Microscopy Imaging and Machine Learning. Proceedings in Applied Mathematics and Mechanics, 2018, 18, e201800246.	0.2	1
27	Computational 3D imaging to quantify structural components and assembly of protein networks. Acta Biomaterialia, 2018, 69, 206-217.	4.1	14
28	Cytological analysis and structural quantification of FtsZ1-2 and FtsZ2-1 network characteristics in Physcomitrella patens. Scientific Reports, 2018, 8, 11165.	1.6	14
29	Resolve Intraoperative Brain Shift as Imitation Game. Lecture Notes in Computer Science, 2018, , 129-137.	1.0	11
30	Patient Surface Model and Internal Anatomical Landmarks Embedding. Informatik Aktuell, 2018, , 43-48.	0.4	0
31	Tomography-Based Quantification of Regional Differences in Cortical Bone Surface Remodeling and Mechano-Response. Calcified Tissue International, 2017, 100, 255-270.	1.5	40
32	Sost deficiency led to a greater cortical bone formation response to mechanical loading and altered gene expression. Scientific Reports, 2017, 7, 9435.	1.6	33
33	Registered Micro-Computed Tomography Data as a Four-Dimensional Imaging Biomarker of Bone Formation and Resorption. Biomarkers in Disease, 2017, , 557-586.	0.0	1
34	The Periosteal Bone Surface is Less Mechano-Responsive than the Endocortical. Scientific Reports, 2016, 6, 23480.	1.6	75
35	Adaptive Stiffness and Joint-Free Kinematics: Actively Actuated Rod-Shaped Structures in Plants and Animals and Their Biomimetic Potential in Architecture and Engineering. Biologically-inspired Systems, 2016, , 135-167.	0.4	7
36	Aging Leads to a Dysregulation in Mechanically Driven Bone Formation and Resorption. Journal of Bone and Mineral Research, 2015, 30, 1864-1873.	3.1	111

Annette I Birkhold

#	Article	IF	CITATIONS
37	Skeletal maturity leads to a reduction in the strain magnitudes induced within the bone: A murine tibia study. Acta Biomaterialia, 2015, 13, 301-310.	4.1	75
38	Monitoring in vivo (re)modeling: A computational approach using 4D microCT data to quantify bone surface movements. Bone, 2015, 75, 210-221.	1.4	57
39	Registered Micro-Computed Tomography Data as a Four-Dimensional Imaging Biomarker of Bone Formation and Resorption. Exposure and Health, 2015, , 1-30.	2.8	0
40	The influence of age on adaptive bone formation and bone resorption. Biomaterials, 2014, 35, 9290-9301.	5.7	94
41	Mineralizing surface is the main target of mechanical stimulation independent of age: 3D dynamic in vivo morphometry. Bone, 2014, 66, 15-25.	1.4	89
42	Diminished response to in vivo mechanical loading in trabecular and not cortical bone in adulthood of female C57Bl/6 mice coincides with a reduction in deformation to load. Bone, 2013, 55, 335-346.	1.4	123
43	GLOBAL AND SITE-SPECIFIC ADAPTATION OF CANCELLOUS BONE TO IN VIVO LOADING. Journal of Biomechanics, 2012, 45, S97.	0.9	Ο