Roberta Saltarelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5446650/publications.pdf

Version: 2024-02-01

471061 414034 1,078 36 17 32 citations h-index g-index papers 36 36 36 1113 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Altered muscle mitochondrial, inflammatory and trophic markers, and reduced exercise training adaptations in type 1 diabetes. Journal of Physiology, 2022, 600, 1405-1418.	1.3	9
2	Defective IGF-1 prohormone N-glycosylation and reduced IGF-1 receptor signaling activation in congenital disorders of glycosylation. Cellular and Molecular Life Sciences, 2022, 79, 150.	2.4	3
3	Effects of a Home-Based Lifestyle Intervention Program on Cardiometabolic Health in Breast Cancer Survivors during the COVID-19 Lockdown. Journal of Clinical Medicine, 2021, 10, 2678.	1.0	26
4	Effects of acute aerobic, resistance and combined exercises on 24-h glucose variability and skeletal muscle signalling responses in type 1 diabetics. European Journal of Applied Physiology, 2020, 120, 2677-2691.	1.2	12
5	Phytochemical composition, antioxidant and antiproliferative activities and effects on nuclear DNA of ethanolic extract from an Italian mycelial isolate of Ganoderma lucidum. Journal of Ethnopharmacology, 2019, 231, 464-473.	2.0	29
6	The intrinsically disordered E-domains regulate the IGF-1 prohormones stability, subcellular localisation and secretion. Scientific Reports, 2018, 8, 8919.	1.6	17
7	A Proteomic View of Truffles: Aspects of Primary Metabolism and Molecular Processes During Their Life Cycle. Soil Biology, 2016, , 409-426.	0.6	2
8	Biochemical Characterization and Antioxidant and Antiproliferative Activities of Different & lt;b> <i>Ganoderma & lt;/i>Collections. Journal of Molecular Microbiology and Biotechnology, 2015, 25, 16-25.</i>	1.0	23
9	Sugar transporters in the black truffle Tuber melanosporum: from gene prediction to functional characterization. Fungal Genetics and Biology, 2015, 81, 52-61.	0.9	8
10	Effect of 300 mT static and 50ÂHz 0.1 mT extremely low frequency magnetic fields on <i>Tuber borchii</i> mycelium. Canadian Journal of Microbiology, 2012, 58, 1174-1182.	0.8	18
11	Hyphal and cytoskeleton polarization in Tuber melanosporum: A genomic and cellular analysis. Fungal Genetics and Biology, 2011, 48, 561-572.	0.9	16
12	Genomic profiling of carbohydrate metabolism in the ectomycorrhizal fungus <i>Tuber melanosporum</i> . New Phytologist, 2011, 189, 751-764.	3.5	51
13	Sulfate metabolism in Tuber borchii: characterization of a putative sulfate transporter and the homocysteine synthase genes. Current Genetics, 2010, 56, 109-119.	0.8	14
14	Morphological and Molecular Modifications Induced by Different Carbohydrate Sources in & lt;i>Tuber borchii. Journal of Molecular Microbiology and Biotechnology, 2010, 18, 120-128.	1.0	8
15	New evidence for nitrogen fixation within the Italian white truffle Tuber magnatum. Fungal Biology, 2010, 114, 936-942.	1.1	95
16	Characterization and mRNA expression profile of the TbNre1 gene of the ectomycorrhizal fungus Tuber borchii. Current Genetics, 2009, 55, 59-68.	0.8	7
17	Biochemical characterisation and antioxidant activity of mycelium of Ganoderma lucidum from Central Italy. Food Chemistry, 2009, 116, 143-151.	4.2	66
18	Geographical traceability of Italian white truffle (<i>Tuber magnatum</i> Pico) by the analysis of volatile organic compounds. Rapid Communications in Mass Spectrometry, 2008, 22, 3147-3153.	0.7	68

#	Article	lF	CITATIONS
19	Effect of storage on biochemical and microbiological parameters of edible truffle species. Food Chemistry, 2008, 109, 8-16.	4.2	7 5
20	Hexose uptake in the plant symbiotic ascomycete Tuber borchii Vittadini: biochemical features and expression pattern of the transporter TBHXT1. Fungal Genetics and Biology, 2007, 44, 187-198.	0.9	51
21	Identification and characterization of the Tuber borchii d-mannitol dehydrogenase which defines a new subfamily within the polyol-specific medium chain dehydrogenases. Fungal Genetics and Biology, 2007, 44, 965-978.	0.9	20
22	Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environmental Microbiology, 2007, 9, 2234-2246.	1.8	120
23	Novel and simple high-performance liquid chromatographic method for determination of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 819, 307-313.	1.2	7
24	New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungusTuber borchiiVittad FEMS Microbiology Letters, 2005, 247, 23-35.	0.7	114
25	Enolase from the ectomycorrhizal fungus Tuber borchii Vittad.: biochemical characterization, molecular cloning, and localization. Fungal Genetics and Biology, 2004, 41, 157-167.	0.9	7
26	A high concentration of glucose inhibits Tuber borchii mycelium growth: a biochemical investigation. Mycological Research, 2003, 107, 72-76.	2.5	7
27	Carbohydrate and amino acid metabolism in Tuber borchii mycelium during glucose utilization: a 13C NMR study. Fungal Genetics and Biology, 2003, 39, 168-175.	0.9	23
28	Cloning, Expression, and Characterization of the hxk-1 Gene from the White Truffle Tuber borchii Vittad.: A First Step toward Understanding Sugar Metabolism. Fungal Genetics and Biology, 2001, 33, 15-23.	0.9	9
29	Possible involvement ofPseudomonas fluorescensand Bacillaceae in structural modifications ofTuber borchiifruit bodies. Canadian Journal of Microbiology, 2001, 47, 264-268.	0.8	42
30	Effects of different carbohydrate sources on the growth of Tuber borchii Vittad. mycelium strains in pure culture. Molecular and Cellular Biochemistry, 2001, 218, 65-70.	1.4	15
31	Possible involvement of <i>Pseudomonas fluorescens</i> and Bacillaceae in structural modifications of <i>Tuber borchii</i> fruit bodies. Canadian Journal of Microbiology, 2001, 47, 264-268.	0.8	25
32	Three different forms of hexokinase are identified during Tuber borchii mycelium growth. Molecular and Cellular Biochemistry, 1999, 194, 71-77.	1.4	7
33	Strain differences in the mycelium of the ectomycorrhizal Tuber borchii. Mycological Research, 1999, 103, 1524-1528.	2.5	9
34	Biochemical and morphological modifications during the growth of Tuber borchii mycelium. Mycological Research, 1998, 102, 403-409.	2.5	47
35	Hexokinase Inactivation Induced by Ascorbic Acid/Fe(II) in Rabbit Erythrocytes Is Independent of Glutathione-Reductive Processes and Appears to Be Mediated by Dehydroascorbic Acid. Archives of Biochemistry and Biophysics, 1997, 342, 191-196.	1.4	11
36	Role of Dehydroascorbate in Rabbit Erythrocyte Hexokinase Inactivation Induced by Ascorbic Acid/Fe(II). Archives of Biochemistry and Biophysics, 1996, 334, 357-361.	1.4	17

3