Barbara Rolando

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/544655/publications.pdf Version: 2024-02-01

RADRADA POLANDO

#	Article	IF	CITATIONS
1	Nitric Oxide Donor Doxorubicins Accumulate into Doxorubicin-Resistant Human Colon Cancer Cells Inducing Cytotoxicity. ACS Medicinal Chemistry Letters, 2011, 2, 494-497.	1.3	63
2	Mitochondrial-Targeting Nitrooxy-doxorubicin: A New Approach To Overcome Drug Resistance. Molecular Pharmaceutics, 2013, 10, 161-174.	2.3	62
3	Folate-targeted liposomal nitrooxy-doxorubicin: An effective tool against P-glycoprotein-positive and folate receptor-positive tumors. Journal of Controlled Release, 2018, 270, 37-52.	4.8	61
4	NO-Donor COX-2 Inhibitors. New Nitrooxy-Substituted 1,5-Diarylimidazoles Endowed with COX-2 Inhibitory and Vasodilator Properties. Journal of Medicinal Chemistry, 2007, 50, 1449-1457.	2.9	58
5	Targeting Myeloid Differentiation Using Potent 2-Hydroxypyrazolo[1,5- <i>a</i>]pyridine Scaffold-Based Human Dihydroorotate Dehydrogenase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 6034-6055.	2.9	57
6	New praziquantel derivatives containing NO-donor furoxans and related furazans as active agents against Schistosoma mansoni. European Journal of Medicinal Chemistry, 2014, 84, 135-145.	2.6	54
7	Physicochemical Profiling of Sartans: A Detailed Study of Ionization Constants and Distribution Coefficients. Helvetica Chimica Acta, 2008, 91, 468-482.	1.0	51
8	New 1,4-Dihydropyridines Endowed with NO-Donor and Calcium Channel Agonist Properties. Journal of Medicinal Chemistry, 2004, 47, 2688-2693.	2.9	46
9	H ₂ S-Donating Doxorubicins May Overcome Cardiotoxicity and Multidrug Resistance. Journal of Medicinal Chemistry, 2016, 59, 4881-4889.	2.9	43
10	Light-Regulated NO Release as a Novel Strategy To Overcome Doxorubicin Multidrug Resistance. ACS Medicinal Chemistry Letters, 2017, 8, 361-365.	1.3	39
11	Coencapsulation of disulfiram and doxorubicin in liposomes strongly reverses multidrug resistance in breast cancer cells. International Journal of Pharmaceutics, 2020, 580, 119191.	2.6	39
12	Synthesis, Physicochemical Characterization, and Biological Activities of New Carnosine Derivatives Stable in Human Serum As Potential Neuroprotective Agents. Journal of Medicinal Chemistry, 2011, 54, 611-621.	2.9	36
13	Edaravone Derivatives Containing NO-Donor Functions. Journal of Medicinal Chemistry, 2009, 52, 574-578.	2.9	35
14	Searching for New NO-Donor Aspirin-like Molecules: A New Class of Nitrooxy-acyl Derivatives of Salicylic Acid. Journal of Medicinal Chemistry, 2008, 51, 1894-1903.	2.9	34
15	A new series of amodiaquine analogues modified in the basic side chain with in vitro antileishmanial and antiplasmodial activity. European Journal of Medicinal Chemistry, 2009, 44, 5071-5079.	2.6	34
16	(Nitrooxyacyloxy)methyl Esters of Aspirin as Novel Nitric Oxide Releasing Aspirins. Journal of Medicinal Chemistry, 2009, 52, 5058-5068.	2.9	32
17	A Nonmetal ontaining Nitric Oxide Donor Activated with Singleâ€Photon Green Light. Chemistry - A European Journal, 2017, 23, 9026-9029.	1.7	32
18	New Nitric Oxide or Hydrogen Sulfide Releasing Aspirins. Journal of Medicinal Chemistry, 2011, 54, 5478-5484.	2.9	31

BARBARA ROLANDO

#	Article	IF	CITATIONS
19	Bioisosteres of Indomethacin as Inhibitors of Aldo-Keto Reductase 1C3. ACS Medicinal Chemistry Letters, 2019, 10, 437-443.	1.3	30
20	Amodiaquine analogues containing NO-donor substructures: Synthesis and their preliminary evaluation as potential tools in the treatment of cerebral malaria. European Journal of Medicinal Chemistry, 2011, 46, 1757-1767.	2.6	29
21	Liposomal Nitrooxy-Doxorubicin: One Step over Caelyx in Drug-Resistant Human Cancer Cells. Molecular Pharmaceutics, 2014, 11, 3068-3079.	2.3	29
22	Hydroxy-1,2,5-oxadiazolyl Moiety as Bioisoster of the Carboxy Function. Synthesis, Ionization Constants, and Pharmacological Characterization of Î ³ -Aminobutyric Acid (GABA) Related Compounds. Journal of Medicinal Chemistry, 2006, 49, 4442-4446.	2.9	28
23	1,2,5-Oxadiazole analogues of leflunomide and related compounds. European Journal of Medicinal Chemistry, 2011, 46, 383-392.	2.6	28
24	Designing Multitarget Antiâ€inflammatory Agents: Chemical Modulation of the Lumiracoxib Structure toward Dual Thromboxane Antagonists–COXâ€2 Inhibitors. ChemMedChem, 2012, 7, 1647-1660.	1.6	28
25	Searching for new NO-donor aspirin-like molecules: Furoxanylacyl derivatives of salicylic acid and related furazans. Bioorganic and Medicinal Chemistry, 2011, 19, 5852-5860.	1.4	27
26	Doxorubicin-antioxidant co-drugs. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5307-5310.	1.0	27
27	4-Hydroxy-1,2,3-triazole moiety as bioisostere of the carboxylic acid function: a novel scaffold to probe the orthosteric Î ³ -aminobutyric acid receptor binding site. European Journal of Medicinal Chemistry, 2018, 158, 311-321.	2.6	27
28	An Autocrine Cytokine/JAK/STAT-Signaling Induces Kynurenine Synthesis in Multidrug Resistant Human Cancer Cells. PLoS ONE, 2015, 10, e0126159.	1.1	27
29	Design, Biological Evaluation, and Molecular Modeling of Tetrahydroisoquinoline Derivatives: Discovery of A Potent P-Glycoprotein Ligand Overcoming Multidrug Resistance in Cancer Stem Cells. Journal of Medicinal Chemistry, 2019, 62, 974-986.	2.9	26
30	4-Hydroxy-1,2,5-oxadiazol-3-yl Moiety as Bioisoster of the Carboxy Function. Synthesis, lonization Constants, and Molecular Pharmacological Characterization at Ionotropic Glutamate Receptors of Compounds Related to Glutamate and Its Homologues. Journal of Medicinal Chemistry, 2010, 53, 4110-4118.	2.9	24
31	Overcoming multidrug resistance by targeting mitochondria with NO-donating doxorubicins. Bioorganic and Medicinal Chemistry, 2016, 24, 967-975.	1.4	24
32	Hydroxyazole scaffold-based Plasmodium falciparum dihydroorotate dehydrogenase inhibitors: Synthesis, biological evaluation and X-ray structural studies. European Journal of Medicinal Chemistry, 2019, 163, 266-280.	2.6	23
33	Synthesis of NO-Donor Bisphosphonates and Their in-Vitro Action on Bone Resorption. Journal of Medicinal Chemistry, 2005, 48, 1322-1329.	2.9	22
34	Synthesis and preliminary pharmacological characterisation of a new class of nitrogen-containing bisphosphonates (N-BPs). Bioorganic and Medicinal Chemistry, 2010, 18, 2428-2438.	1.4	22
35	Hyperglycemia Promotes Chemoresistance Through the Reduction of the Mitochondrial DNA Damage, the Bax/Bcl-2 and Bax/Bcl-XL Ratio, and the Cells in Sub-G1 Phase Due to Antitumoral Drugs Induced-Cytotoxicity in Human Colon Adenocarcinoma Cells. Frontiers in Pharmacology, 2018, 9, 866.	1.6	22
36	NO-donor thiacarbocyanines as multifunctional agents for Alzheimer's disease. Bioorganic and Medicinal Chemistry, 2015, 23, 4688-4698.	1.4	21

BARBARA ROLANDO

#	Article	IF	CITATIONS
37	Waterâ€Soluble Nitricâ€Oxideâ€Releasing Acetylsalicylic Acid (ASA) Prodrugs. ChemMedChem, 2013, 8, 1199-1209.	1.6	20
38	Five-Membered <i>N</i> -Heterocyclic Scaffolds as Novel Amino Bioisosteres at γ-Aminobutyric Acid (GABA) Type A Receptors and GABA Transporters. Journal of Medicinal Chemistry, 2019, 62, 5797-5809.	2.9	20
39	Multitarget drugs: Focus on the NO-donor hybrid drugs. Pure and Applied Chemistry, 2008, 80, 1693-1701.	0.9	19
40	Enhancing doxorubicin anticancer activity with a novel polymeric platform photoreleasing nitric oxide. Biomaterials Science, 2020, 8, 1329-1344.	2.6	19
41	Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5- <i>a</i>]pyridine Scaffold: SAR of the Biphenyl Moiety. Journal of Medicinal Chemistry, 2021, 64, 5404-5428.	2.9	19
42	Amphiphilic tri- and tetra-block co-polymers combining versatile functionality with facile assembly into cytocompatible nanoparticles. Biomaterials Science, 2019, 7, 3832-3845.	2.6	18
43	Nitrooxymethyl‧ubstituted Analogues of Rofecoxib: Synthesis and Pharmacological Characterization. Chemistry and Biodiversity, 2010, 7, 1173-1182.	1.0	17
44	H2S donating corticosteroids: Design, synthesis and biological evaluation in a murine model of asthma. Journal of Advanced Research, 2022, 35, 267-277.	4.4	17
45	Novel antioxidant agents deriving from molecular combination of Vitamin C and NO-donor moieties. Bioorganic and Medicinal Chemistry, 2008, 16, 5199-5206.	1.4	16
46	New tetrahydroisoquinoline-based P-glycoprotein modulators: decoration of the biphenyl core gives selective ligands. MedChemComm, 2018, 9, 862-869.	3.5	15
47	Searching for balanced hybrid NO-donor 1,4-dihydropyridines with basic properties. Pharmaceutical Research, 2001, 18, 987-991.	1.7	14
48	Nitrooxymethyl‣ubstituted Analogues of Celecoxib: Synthesis and Pharmacological Characterization. Chemistry and Biodiversity, 2009, 6, 369-379.	1.0	14
49	Carnosine analogues containing NO-donor substructures: Synthesis, physico-chemical characterization and preliminary pharmacological profile. European Journal of Medicinal Chemistry, 2012, 54, 103-112.	2.6	14
50	Regioselective Nâ€Alkylation of Ethyl 4â€Benzyloxyâ€1,2,3â€triazolecarboxylate: A Useful Tool for the Synthesis of Carboxylic Acid Bioisosteres. Journal of Heterocyclic Chemistry, 2019, 56, 501-519.	1.4	14
51	Validation of Thiosemicarbazone Compounds as P-Glycoprotein Inhibitors in Human Primary Brain–Blood Barrier and Glioblastoma Stem Cells. Molecular Pharmaceutics, 2019, 16, 3361-3373.	2.3	14
52	The Lipophilicity Behavior of Three Catechol-O-methyltransferase (COMT) Inhibitors and Simple Analogues. Helvetica Chimica Acta, 2006, 89, 144-152.	1.0	13
53	NO-donor melatonin derivatives: synthesis and in vitro pharmacological characterization. Journal of Pineal Research, 2007, 42, 371-385.	3.4	13
54	A multi-photoresponsive molecular-hybrid for dual-modal photoinactivation of cancer cells. RSC Advances, 2014, 4, 44827-44836.	1.7	13

BARBARA ROLANDO

#	Article	IF	CITATIONS
55	One molecule two goals: A selective P-glycoprotein modulator increases drug transport across gastro-intestinal barrier and recovers doxorubicin toxicity in multidrug resistant cancer cells. European Journal of Medicinal Chemistry, 2020, 208, 112843.	2.6	13
56	A new class of NO-donor H3-antagonists. Il Farmaco, 2004, 59, 359-371.	0.9	12
57	Novel R-roscovitine NO-donor hybrid compounds as potential pro-resolution of inflammation agents. Bioorganic and Medicinal Chemistry, 2013, 21, 2107-2116.	1.4	12
58	Galactosylated Pro–Drug of Ursodeoxycholic Acid: Design, Synthesis, Characterization, and Pharmacological Effects in a Rat Model of Estrogen-Induced Cholestasis. Molecular Pharmaceutics, 2018, 15, 21-30.	2.3	12
59	Aceclofenac–Galactose Conjugate: Design, Synthesis, Characterization, and Pharmacological and Toxicological Evaluations. Molecular Pharmaceutics, 2018, 15, 3101-3110.	2.3	12
60	Synthesis physicochemical profile and PAMPA study of new NO-donor edaravone co-drugs. Bioorganic and Medicinal Chemistry, 2012, 20, 841-850.	1.4	11
61	A Molecular Hybrid for Mitochondriaâ€Targeted NO Photodelivery. ChemMedChem, 2018, 13, 87-96.	1.6	11
62	Unsymmetrically substituted furoxans. Part 19. Methyl and phenylfuroxansulfonic acids and related sulfonamides. Journal of Heterocyclic Chemistry, 2009, 46, 866-872.	1.4	10
63	In vitro pharmacological evaluation of multitarget agents for thromboxane prostanoid receptor antagonism and COX-2 inhibition. Pharmacological Research, 2016, 103, 132-143.	3.1	10
64	Paracetamol–Galactose Conjugate: A Novel Prodrug for an Old Analgesic Drug. Molecular Pharmaceutics, 2019, 16, 4181-4189.	2.3	10
65	Tuning the Hydrophobicity of a Mitochondriaâ€Targeted NO Photodonor. ChemMedChem, 2018, 13, 1238-1245.	1.6	9
66	Versatile, Highly Controlled Synthesis of Hybrid (Meth)acrylate–Polyester–Carbonates and their Exploitation in Tandem Postâ€Polymerization–Functionalization. Macromolecular Chemistry and Physics, 2019, 220, 1900270.	1.1	8
67	Tuning NO release of organelle-targeted furoxan derivatives and their cytotoxicity against lung cancer cells. Bioorganic Chemistry, 2021, 111, 104911.	2.0	8
68	New aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the hydroxytriazole scaffold. European Journal of Medicinal Chemistry, 2022, 237, 114366.	2.6	7
69	Structure-Antioxidant Activity Relationships in a Series of NO-Donor Phenols. ChemMedChem, 2008, 3, 1443-1448.	1.6	6
70	Ketogal Safety Profile in Human Primary Colonic Epithelial Cells and in Mice. Pharmaceuticals, 2021, 14, 1149.	1.7	5
71	Galactosylated Prodrugs: A Strategy to Improve the Profile of Nonsteroidal Anti-Inflammatory Drugs. Pharmaceuticals, 2022, 15, 552.	1.7	3
72	Amphiphilic NO-Donor Antioxidants. ChemMedChem, 2007, 2, 234-240.	1.6	2

#	Article	IF	CITATIONS
73	Physicochemical profile and in vitro permeation behavior of a new class of non-steroidal anti-inflammatory drug candidates. European Journal of Pharmaceutical Sciences, 2010, 40, 217-221.	1.9	1