Paul J Grippo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5446196/publications.pdf Version: 2024-02-01

DALLI L C.DIDDO

#	Article	IF	CITATIONS
1	Preinvasive pancreatic neoplasia of ductal phenotype induced by acinar cell targeting of mutant Kras in transgenic mice. Cancer Research, 2003, 63, 2016-9.	0.9	170
2	TGFÎ ² Signaling in the Pancreatic Tumor Microenvironment Promotes Fibrosis and Immune Evasion to Facilitate Tumorigenesis. Cancer Research, 2016, 76, 2525-2539.	0.9	164
3	TGFβ Blockade Augments PD-1 Inhibition to Promote T-Cell–Mediated Regression of Pancreatic Cancer. Molecular Cancer Therapeutics, 2019, 18, 613-620.	4.1	95
4	The Oncopig Cancer Model: An Innovative Large Animal Translational Oncology Platform. Frontiers in Oncology, 2017, 7, 190.	2.8	92
5	Long-Term Gemcitabine Treatment Reshapes the Pancreatic Tumor Microenvironment and Sensitizes Murine Carcinoma to Combination Immunotherapy. Cancer Research, 2020, 80, 3101-3115.	0.9	77
6	Pancreatic cancer subtypes: a roadmap for precision medicine. Annals of Medicine, 2018, 50, 277-287.	3.8	69
7	Concurrent PEDF deficiency and Kras mutation induce invasive pancreatic cancer and adipose-rich stroma in mice. Gut, 2012, 61, 1454-1464.	12.1	68
8	Activin signaling is an essential component of the TGF-β induced pro-metastatic phenotype in colorectal cancer. Scientific Reports, 2017, 7, 5569.	3.3	55
9	Involvement of eicosanoids in the pathogenesis of pancreatic cancer: The roles of cyclooxygenase-2 and 5-lipoxygenase. World Journal of Gastroenterology, 2014, 20, 10729.	3.3	55
10	Activin and TGFÎ ² use diverging mitogenic signaling in advanced colon cancer. Molecular Cancer, 2015, 14, 182.	19.2	52
11	BET inhibitors block pancreatic stellate cell collagen I production and attenuate fibrosis in vivo. JCI Insight, 2017, 2, e88032.	5.0	50
12	HDAC3 mediates smoking-induced pancreatic cancer. Oncotarget, 2016, 7, 7747-7760.	1.8	41
13	Pigment Epithelium-Derived Factor (PEDF) as a Regulator of Wound Angiogenesis. Scientific Reports, 2018, 8, 11142.	3.3	38
14	Zileuton, 5-Lipoxygenase Inhibitor, Acts as a Chemopreventive Agent in Intestinal Polyposis, by Modulating Polyp and Systemic Inflammation. PLoS ONE, 2015, 10, e0121402.	2.5	37
15	Loss of TGFÎ ² signaling promotes colon cancer progression and tumor-associated inflammation. Oncotarget, 2017, 8, 3826-3839.	1.8	34
16	Modeling Pancreatic Cancer in Animals to Address Specific Hypotheses. , 2005, 103, 217-244.		33
17	Interplay between interferon regulatory factor 1 and BRD4 in the regulation of PD-L1 in pancreatic stellate cells. Scientific Reports, 2018, 8, 13225.	3.3	32
18	Acinarâ€ŧoâ€ductal metaplasia accompanies câ€mycâ€induced exocrine pancreatic cancer progression in transgenic rodents. International Journal of Cancer, 2012, 131, 1243-1248.	5.1	30

PAUL J GRIPPO

#	Article	IF	CITATIONS
19	Deploying Mouse Models of Pancreatic Cancer for Chemoprevention Studies. Cancer Prevention Research, 2010, 3, 1382-1387.	1.5	27
20	miR-216 and miR-217 expression is reduced in transgenic mouse models of pancreatic adenocarcinoma, knockout of miR-216/miR-217 host gene is embryonic lethal. Functional and Integrative Genomics, 2017, 17, 203-212.	3.5	27
21	Omega-3 Fatty Acids Prevent Early Pancreatic Carcinogenesis via Repression of the AKT Pathway. Nutrients, 2018, 10, 1289.	4.1	27
22	Alteration of strain background and a high omegaâ€6 fat diet induces earlier onset of pancreatic neoplasia in ELâ€Kras transgenic mice. International Journal of Cancer, 2011, 128, 2783-2792.	5.1	26
23	Cellâ€specific transgene expression from a widely transcribed promoter using Cre/ <i>lox</i> in mice. Genesis, 2002, 32, 277-286.	1.6	25
24	PEDF inhibits pancreatic tumorigenesis by attenuating the fibro-inflammatory reaction. Oncotarget, 2016, 7, 28218-28234.	1.8	25
25	Chronic exposure to excess iron promotes EMT and cancer via p53 loss in pancreatic cancer. Asian Journal of Pharmaceutical Sciences, 2020, 15, 237-251.	9.1	24
26	Roles of autophagy and metabolism in pancreatic cancer cell adaptation to environmental challenges. American Journal of Physiology - Renal Physiology, 2017, 313, G524-G536.	3.4	23
27	KRASG12D and TP53R167H Cooperate to Induce Pancreatic Ductal Adenocarcinoma in Sus scrofa Pigs. Scientific Reports, 2018, 8, 12548.	3.3	23
28	p110Î ³ deficiency protects against pancreatic carcinogenesis yet predisposes to diet-induced hepatotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14724-14733.	7.1	22
29	Animal Models. Pancreas, 2019, 48, 759-779.	1.1	21
30	Utilizing past and present mouse systems to engineer more relevant pancreatic cancer models. Frontiers in Physiology, 2014, 5, 464.	2.8	20
31	MAP4K4 promotes pancreatic tumorigenesis via phosphorylation and activation of mixed lineage kinase 3. Oncogene, 2021, 40, 6153-6165.	5.9	19
32	Snail Cooperates with KrasG12Dâ€^ <i>In Vivo</i> to Increase Stem Cell Factor and Enhance Mast Cell Infiltration. Molecular Cancer Research, 2014, 12, 1440-1448.	3.4	17
33	Role of stromal activin A in human pancreatic cancer and metastasis in mice. Scientific Reports, 2021, 11, 7986.	3.3	16
34	Ablation of 5-lipoxygenase mitigates pancreatic lesion development. Journal of Surgical Research, 2015, 194, 481-487.	1.6	14
35	Knockout of Acinar Enriched microRNAs in Mice Promote Duct Formation But Not Pancreatic Cancer. Scientific Reports, 2019, 9, 11147.	3.3	14
36	Loss of Sirt2 increases and prolongs a caerulein-induced pancreatitis permissive phenotype and induces spontaneous oncogenic Kras mutations in mice. Scientific Reports, 2018, 8, 16501.	3.3	13

Paul J Grippo

#	Article	IF	CITATIONS
37	Mixed Lineage Kinase 3 phosphorylates prolyl-isomerase PIN1 and potentiates GLI1 signaling in pancreatic cancer development. Cancer Letters, 2021, 515, 1-13.	7.2	12
38	Visualization of Mouse Pancreas Architecture Using MR Microscopy. American Journal of Pathology, 2011, 179, 610-618.	3.8	8
39	The Complexity of Omega-3 Fatty Acid Modulation of Signaling Pathways Related to Pancreatic Cancer. Current Medicinal Chemistry, 2018, 25, 2608-2623.	2.4	8
40	Slug inhibits pancreatic cancer initiation by blocking Kras-induced acinar-ductal metaplasia. Scientific Reports, 2016, 6, 29133.	3.3	7
41	TM4SF18 is aberrantly expressed in pancreatic cancer and regulates cell growth. PLoS ONE, 2019, 14, e0211711.	2.5	6
42	A portable pen-sized instrumentation to measure stiffness of soft tissues in vivo. Scientific Reports, 2021, 11, 378.	3.3	6
43	Thioredoxin system-mediated regulation of mutant Kras associated pancreatic neoplasia and cancer. Oncotarget, 2017, 8, 92667-92681.	1.8	5
44	Canonical and alternative transcript expression of PAX6 and CXCR4 in pancreatic cancer. Oncology Letters, 2017, 13, 4027-4034.	1.8	4
45	Targeting cancer with tumor-specific therapeutic strategies—metabolic reprogramming beyond the Warburg effect. Translational Cancer Research, 2017, 6, S585-S586.	1.0	3
46	Evaluating Dietary Compounds in Pancreatic Cancer Modeling Systems. Methods in Molecular Biology, 2013, 980, 225-248.	0.9	2
47	Mouse models of pancreatic cancer induced by chronic pancreatitis and smoking Journal of Clinical Oncology, 2014, 32, 229-229.	1.6	1
48	A New SET Piece in Cancer Development. Gastroenterology, 2020, 159, 437-439.	1.3	0
49	ARID1A: guardian of normal pancreatic ducts. Translational Cancer Research, 2019, 8, S133-S134.	1.0	0