
Martin D Hager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5445959/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Redox-active polymers: The magic key towards energy storage – a polymer design guideline progress in polymer science. Progress in Polymer Science, 2022, 125, 101474.	24.7	48
2	A low-cost amperometric sensor for the combined state-of-charge, capacity, and state-of-health monitoring of redox flow battery electrolytes. Energy Conversion and Management: X, 2022, 14, 100188.	1.6	2
3	All-Organic Redox Targeting with a Single Redox Moiety: Combining Organic Radical Batteries and Organic Redox Flow Batteries. ACS Applied Materials & Interfaces, 2022, 14, 6638-6648.	8.0	22
4	Stability of TMA-TEMPO-based aqueous electrolytes for redox-flow batteries. Journal of Power Sources, 2022, 525, 230996.	7.8	16
5	Structural alterations on the TEMPO scaffold and their impact on the performance as active materials for redox flow batteries. Materials Advances, 2022, 3, 4278-4288.	5.4	6
6	Regaining Potential: Studies Concerning 2-Ferrocenylethyl Methacrylate, Its Polymers, and Application in Redox Flow Batteries. Macromolecules, 2022, 55, 1576-1589.	4.8	6
7	A Viologen Polymer and a Compact Ferrocene: Comparison of Solution Viscosities and Their Performance in a Redox Flow Battery with a Size Exclusion Membrane. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	7
8	State of Charge and State of Health Assessment of Viologens in Aqueousâ€Organic Redoxâ€Flow Electrolytes Using In Situ IR Spectroscopy and Multivariate Curve Resolution. Advanced Science, 2022, , 2200535.	11.2	4
9	Synthesis and Characterization of Metallopolymer Networks Featuring Triple Shape-Memory Ability Based on Different Reversible Metal Complexes. Polymers, 2022, 14, 1833.	4.5	2
10	Reversible chemical bond-based self-healing materials. , 2022, , 177-192.		0
11	An effective method of reconnoitering current–voltage (<i>IV</i>) characteristics of organic solar cells. Journal of Applied Physics, 2022, 132, .	2.5	2
12	Inkjet-printed microband electrodes for a cost-efficient state-of-charge monitoring in redox flow batteries. Sensors and Actuators B: Chemical, 2022, 369, 132291.	7.8	5
13	DNA Origami Meets Polymers: A Powerful Tool for the Design of Defined Nanostructures. Angewandte Chemie - International Edition, 2021, 60, 6218-6229.	13.8	35
14	Ferrocene containing redox-responsive poly(2-oxazoline)s. Chemical Communications, 2021, 57, 1308-1311.	4.1	6
15	Kombination von DNAâ€Origami und Polymeren: Eine leistungsstarke Methode zum Aufbau definierter Nanostrukturen. Angewandte Chemie, 2021, 133, 6282-6294.	2.0	3
16	Shapeâ€Memory Metallopolymers Based on Two Orthogonal Metal–Ligand Interactions. Advanced Materials, 2021, 33, e2006655.	21.0	31
17	Trust is good, control is better: a review on monitoring and characterization techniques for flow battery electrolytes. Materials Horizons, 2021, 8, 1866-1925.	12.2	45

#	Article	IF	CITATIONS
19	Photocathodes beyond NiO: charge transfer dynamics in a π-conjugated polymer functionalized with Ru photosensitizers. Scientific Reports, 2021, 11, 2787.	3.3	7
20	Study of Anion Exchange Membrane Properties Incorporating N-spirocyclic Quaternary Ammonium Cations and Aqueous Organic Redox Flow Battery Performance. Membranes, 2021, 11, 367.	3.0	12
21	Quantification of Tripleâ€Shape Memory Behavior of Polymers Utilizing Tension and Torsion. Macromolecular Chemistry and Physics, 2021, 222, 2000462.	2.2	8
22	Novel, Stable Catholyte for Aqueous Organic Redox Flow Batteries: Symmetric Cell Study of Hydroquinones with High Accessible Capacity. Molecules, 2021, 26, 3823.	3.8	17
23	IR Spectroscopy as a Method for Online Electrolyte State Assessment in RFBs. Advanced Energy Materials, 2021, 11, 2100931.	19.5	9
24	Versatile Applications of Metallopolymers. Progress in Polymer Science, 2021, 119, 101428.	24.7	29
25	The time-dependency of the healing behavior of laser-scratched polymer films. Polymer Testing, 2021, 100, 107264.	4.8	1
26	Liquid Chromatography Analysis of Reactive Oxoammonium Cations. Chromatographia, 2021, 84, 999.	1.3	1
27	In-depth characterization of self-healing polymers based on π–π nteractions. Beilstein Journal of Organic Chemistry, 2021, 17, 2496-2504.	2.2	7
28	Halogen bonding in polymer science: towards new smart materials. Chemical Science, 2021, 12, 9275-9286.	7.4	42
29	Red-light sensitized hole-conducting polymer for energy conversion. Physical Chemistry Chemical Physics, 2021, 23, 18026-18034.	2.8	1
30	Dual crosslinked metallopolymers using orthogonal metal complexes as rewritable shape-memory polymers. Journal of Materials Chemistry A, 2021, 9, 15051-15058.	10.3	9
31	Uphill and downhill charge generation from charge transfer to charge separated states in organic solar cells. Journal of Materials Chemistry C, 2021, 9, 14463-14489.	5.5	10
32	The Influence of the Nature of Redox-Active Moieties on the Properties of Redox-Active Ionic Liquids and on Their Use as Electrolyte for Supercapacitors. Energies, 2021, 14, 6344.	3.1	5
33	Novel Biobased Selfâ€Healing Ionomers Derived from Itaconic Acid Derivates. Macromolecular Rapid Communications, 2021, 42, 2000636.	3.9	6
34	Anthraquinone-2,6-disulfamidic acid: an anolyte with low decomposition rates at elevated temperatures. RSC Advances, 2021, 11, 38759-38764.	3.6	2
35	Mechanical Activation of Terpyridine Metal Complexes in Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 230-242.	3.7	7

Self-healing polymers: from general basics to mechanistic aspects. , 2020, , 75-94.

#	Article	IF	CITATIONS
37	Aqueous Redox Flow Battery Suitable for High Temperature Applications Based on a Tailorâ€Made Ferrocene Copolymer. Advanced Energy Materials, 2020, 10, 2001825.	19.5	43
38	Polymerâ€Based Batteries—Flexible and Thin Energy Storage Systems. Advanced Materials, 2020, 32, e2000587.	21.0	87
39	A novel approach for the quantification of scratch healing of polymers. Polymer Testing, 2020, 90, 106699.	4.8	9
40	Quantification of the scratch-healing efficiency for novel zwitterionic polymers. NPG Asia Materials, 2020, 12, .	7.9	23
41	Lanthanoids Goes Healing: Lanthanoidic Metallopolymers and Their Scratch Closure Behavior. Polymers, 2020, 12, 838.	4.5	4
42	Fluorescence upconversion by triplet–triplet annihilation in all-organic poly(methacrylate)-terpolymers. Physical Chemistry Chemical Physics, 2020, 22, 4072-4079.	2.8	19
43	An Amperometric, Temperature-Independent, and Calibration-Free Method for the Real-Time State-of-Charge Monitoring of Redox Flow Battery Electrolytes. Chemistry of Materials, 2019, 31, 5363-5369.	6.7	18
44	Detailed Analysis of the Influencing Parameters on the Self-Healing Behavior of Dynamic Urea-Crosslinked Poly(methacrylate)s. Molecules, 2019, 24, 3597.	3.8	5
45	(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl-Containing Zwitterionic Polymer as Catholyte Species for High-Capacity Aqueous Polymer Redox Flow Batteries. Chemistry of Materials, 2019, 31, 7987-7999.	6.7	64
46	Femtosecond laser-induced scratch ablation as an efficient new method to evaluate the self-healing behavior of supramolecular polymers. Journal of Materials Chemistry A, 2019, 7, 2148-2155.	10.3	7
47	Self-Healing Polymers: From Biological Systems to Highly Functional Polymers. Polymers and Polymeric Composites, 2019, , 665-717.	0.6	0
48	Healing through Histidine: Bioinspired Pathways to Self-Healing Polymers via Imidazole–Metal Coordination. Biomimetics, 2019, 4, 20.	3.3	63
49	Shape-Memory Metallopolymer Networks Based on a Triazole–Pyridine Ligand. Polymers, 2019, 11, 1889.	4.5	7
50	Photophysics of a Bisâ€Furanâ€Functionalized 4,7â€ <i>bis</i> (Phenylethynyl)â€2,1,3â€benzothiadiazole: A Building Block for Dynamic Polymers. ChemPhotoChem, 2019, 3, 54-60.	3.0	2
51	Return of the Iron Age. Joule, 2019, 3, 11-13.	24.0	2
52	Platinumâ€terpyridine complexes in polymers: A novel approach for the synthesis of selfâ€healing metallopolymers. Journal of Applied Polymer Science, 2019, 136, 47064.	2.6	11
53	How to Design a Selfâ€Healing Polymer: General Concepts of Dynamic Covalent Bonds and Their Application for Intrinsic Healable Materials. Advanced Materials Interfaces, 2018, 5, 1800051.	3.7	177
54	Hydrogel-Embedded Model Photocatalytic System Investigated by Raman and IR Spectroscopy Assisted by Density Functional Theory Calculations and Two-Dimensional Correlation Analysis. Journal of Physical Chemistry A, 2018, 122, 2677-2687.	2.5	7

#	Article	IF	CITATIONS
55	Influence of Aspartate Moieties on the Selfâ€Healing Behavior of Histidineâ€Rich Supramolecular Polymers. Macromolecular Rapid Communications, 2018, 39, e1700742.	3.9	8
56	Conjugated Oligomers as Fluorescence Marker for the Determination of the Self-Healing Efficiency in Mussel-Inspired Polymers. Chemistry of Materials, 2018, 30, 2791-2799.	6.7	21
57	Thermally Switchable Fluorescence Resonance Energy Transfer via Reversible Diels–Alder Reaction of ï€â€Conjugated Oligoâ€(Phenylene Ethynylene)s. Macromolecular Rapid Communications, 2018, 39, e1700789.	3.9	6
58	Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors. Chemical Papers, 2018, 72, 1769-1778.	2.2	6
59	Synthesis and Characterization of a Phthalimideâ€Containing Redoxâ€Active Polymer for Highâ€Voltage Polymerâ€Based Redoxâ€Flow Batteries. Macromolecular Chemistry and Physics, 2018, 219, 1700267.	2.2	23
60	Do You Get What You See? Understanding Molecular Selfâ€Healing. Chemistry - A European Journal, 2018, 24, 2493-2502.	3.3	18
61	An aqueous all-organic redox-flow battery employing a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl-containing polymer as catholyte and dimethyl viologen dichloride as anolyte. Journal of Power Sources, 2018, 378, 546-554.	7.8	65
62	A healing ionomer crosslinked by a bis-bidentate halogen bond linker: a route to hard and healable coatings. Polymer Chemistry, 2018, 9, 2193-2197.	3.9	24
63	Remendable polymers via reversible Diels–Alder cycloaddition of anthracene ontaining copolymers with fullerenes. Journal of Applied Polymer Science, 2018, 135, 45916.	2.6	15
64	From Dendrimers to Macrocycles: 80 Years George R. Newkome—Milestones of a Gentleman Scientist. Macromolecular Chemistry and Physics, 2018, 219, 1800269.	2.2	4
65	Self-healing Polymers: From Biological Systems to Highly Functional Polymers. Polymers and Polymeric Composites, 2018, , 1-53.	0.6	1
66	Macromol. Rapid Commun. 17/2018. Macromolecular Rapid Communications, 2018, 39, 1870041.	3.9	0
67	Palladiumâ€SCS Pincer Complexes as Crossâ€Linking Moieties in Selfâ€Healing Metallopolymers. Macromolecular Rapid Communications, 2018, 39, e1800495.	3.9	9
68	A translation of the structure of mussel byssal threads into synthetic materials by the utilization of histidine-rich block copolymers. Polymer Chemistry, 2018, 9, 3543-3551.	3.9	11
69	Microâ€īubular Flow Cell Design Utilizing Commercial Hollow Fiber Dialysis Membranes for Sizeâ€Exclusion Based Flow Batteries. Energy Technology, 2018, 6, 2296-2310.	3.8	4
70	Redoxâ€Flowâ€Batterien: von metallbasierten zu organischen Aktivmaterialien. Angewandte Chemie, 2017, 129, 702-729.	2.0	89
71	Histidine–Zinc Interactions Investigated by Isothermal Titration Calorimetry (ITC) and their Application in Selfâ€Healing Polymers. Macromolecular Chemistry and Physics, 2017, 218, 1600458.	2.2	37
72	Aqueous 2,2,6,6-Tetramethylpiperidine- <i>N</i> -oxyl Catholytes for a High-Capacity and High Current Density Oxygen-Insensitive Hybrid-Flow Battery. ACS Energy Letters, 2017, 2, 411-416.	17.4	139

#	Article	IF	CITATIONS
73	Increased stability in selfâ€healing polymer networks based on reversible Michael addition reactions. Journal of Applied Polymer Science, 2017, 134, .	2.6	21
74	Polymeric Halogenâ€Bondâ€Based Donor Systems Showing Selfâ€Healing Behavior in Thin Films. Angewandte Chemie - International Edition, 2017, 56, 4047-4051.	13.8	79
75	An Approach Toward Replacing Vanadium: A Single Organic Molecule for the Anode and Cathode of an Aqueous Redoxâ€Flow Battery. ChemistryOpen, 2017, 6, 216-220.	1.9	66
76	Self-healing Functional Polymers: Optical Property Recovery of Conjugated Polymer Films by Uncatalyzed Imine Metathesis. Macromolecules, 2017, 50, 3789-3795.	4.8	26
77	A New Approach Toward Metalâ€Free Selfâ€Healing Ionomers Based on Phosphate and Methacrylate Containing Copolymers. Macromolecular Chemistry and Physics, 2017, 218, 1700340.	2.2	16
78	Directed Orientation of Oligo(phenylene ethynylene)s Using Ureas or Urethanes in Rod–Coil Copolymers. Macromolecular Chemistry and Physics, 2017, 218, 1700343.	2.2	5
79	Intrinsic self-healing polymers with a high E-modulus based on dynamic reversible urea bonds. NPG Asia Materials, 2017, 9, e420-e420.	7.9	97
80	Polymerbasierte Halogenbrückendonoren mit selbstheilenden Eigenschaften in Filmen. Angewandte Chemie, 2017, 129, 4105-4110.	2.0	14
81	Contributions of hard and soft blocks in the self-healing of metal-ligand-containing block copolymers. European Polymer Journal, 2017, 93, 417-427.	5.4	33
82	Allâ€Organic Battery Composed of Thianthrene―and TCAQâ€Based Polymers. Advanced Energy Materials, 2017, 7, 1601415.	19.5	115
83	Bi-diketopyrrolopyrrole (Bi-DPP) as a novel electron accepting compound in low band gap π-conjugated donor–acceptor copolymers/oligomers. Designed Monomers and Polymers, 2017, 20, 210-220.	1.6	1
84	Redoxâ€Flow Batteries: From Metals to Organic Redoxâ€Active Materials. Angewandte Chemie - International Edition, 2017, 56, 686-711.	13.8	744
85	Assorted Phenoxyl-Radical Polymers and Their Application in Lithium-Organic Batteries. Macromolecular Rapid Communications, 2016, 37, 725-730.	3.9	20
86	Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light. Nature Communications, 2016, 7, 13623.	12.8	87
87	Wasserbasierte Redoxâ€Flowâ€Batterie mit hoher Kapazitäund Leistung: das TEMPTMA/MVâ€System. Angewandte Chemie, 2016, 128, 14639-14643.	2.0	46
88	Photoâ€Rechargeable Electric Energy Storage Systems. Advanced Energy Materials, 2016, 6, 1500369.	19.5	157
89	Poly(boron-dipyrromethene)—A Redox-Active Polymer Class for Polymer Redox-Flow Batteries. Chemistry of Materials, 2016, 28, 3401-3405.	6.7	105
90	Selfâ€Healing Polymer Networks Based on Reversible Michael Addition Reactions. Macromolecular Chemistry and Physics, 2016, 217, 2541-2550.	2.2	45

#	Article	IF	CITATIONS
91	Oxime crosslinked polymer networks: Is every reversible covalent bond suitable to create selfâ€healing polymers?. Journal of Applied Polymer Science, 2016, 133, .	2.6	15
92	Investigation of Ice-Templated Porous Electrodes for Application in Organic Batteries. ACS Applied Materials & Interfaces, 2016, 8, 23614-23623.	8.0	22
93	An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature, 2016, 534, S9-S10.	27.8	7
94	TEMPO/Phenazine Combi-Molecule: A Redox-Active Material for Symmetric Aqueous Redox-Flow Batteries. ACS Energy Letters, 2016, 1, 976-980.	17.4	161
95	An Aqueous Redoxâ€Flow Battery with High Capacity and Power: The TEMPTMA/MV System. Angewandte Chemie - International Edition, 2016, 55, 14427-14430.	13.8	351
96	A Metal Salt Dependent Self-Healing Response in Supramolecular Block Copolymers. Macromolecules, 2016, 49, 8418-8429.	4.8	37
97	Thermally triggered optical tuning of π-conjugated graft copolymers based on reversible Diels–Alder reaction. RSC Advances, 2016, 6, 98221-98227.	3.6	6
98	Poly(TEMPO)/Zinc Hybridâ€Flow Battery: A Novel, "Green,―High Voltage, and Safe Energy Storage System. Advanced Materials, 2016, 28, 2238-2243.	21.0	210
99	Molecular self-healing mechanisms between C ₆₀ -fullerene and anthracene unveiled by Raman and two-dimensional correlation spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 17973-17982.	2.8	14
100	Poly(DCAQI): Synthesis and characterization of a new redox-active polymer. Journal of Polymer Science Part A, 2016, 54, 1998-2003.	2.3	8
101	Synthesis and electrochemical properties of novel redoxâ€active polymers with anthraquinone moieties by Pdâ€catalyzed cyclopolymerization of dienes. Journal of Polymer Science Part A, 2016, 54, 2184-2190.	2.3	16
102	Polymer/zinc hybrid-flow battery using block copolymer micelles featuring a TEMPO corona as catholyte. Polymer Chemistry, 2016, 7, 1711-1718.	3.9	81
103	Characterization of Self-Healing Polymers: From Macroscopic Healing Tests to the Molecular Mechanism. Advances in Polymer Science, 2015, , 113-142.	0.8	39
104	Self-Healing Polymers Based on Reversible Covalent Bonds. Advances in Polymer Science, 2015, , 1-58.	0.8	32
105	Self-Healing Functional Polymeric Materials. Advances in Polymer Science, 2015, , 247-283.	0.8	19
106	Intrinsic Self-Healing Polymers Based on Supramolecular Interactions: State of the Art and Future Directions. Advances in Polymer Science, 2015, , 59-112.	0.8	32
107	Poly[<i>N</i> â€(10â€oxoâ€2â€vinylanthracenâ€9(10 <i>H</i>)â€ylidene)cyanamide] as a novel cathode materia liâ€organic batteries. Journal of Polymer Science Part A, 2015, 53, 2517-2523.	l for 2.3	15
108	Two-dimensional Raman correlation spectroscopy reveals molecular structural changes during temperature-induced self-healing in polymers based on the Diels–Alder reaction. Physical Chemistry Chemical Physics, 2015, 17, 22587-22595.	2.8	38

#	Article	IF	CITATIONS
109	Selfâ€Healing Materials: Acylhydrazones as Reversible Covalent Crosslinkers for Selfâ€Healing Polymers (Adv. Funct. Mater. 22/2015). Advanced Functional Materials, 2015, 25, 3278-3278.	14.9	4
110	The Selfâ€Healing Potential of Triazoleâ€Pyridineâ€Based Metallopolymers. Macromolecular Rapid Communications, 2015, 36, 604-609.	3.9	37
111	Towards Hydrogen Evolution Initiated by LED Light: 2â€(1 <i>H</i> â€1,2,3â€Triazolâ€4â€yl)pyridineâ€Containing Polymers as Photocatalyst. Macromolecular Rapid Communications, 2015, 36, 671-677.	3.9	17
112	Synthesis and characterization of new redox-active polymers based on 10-(1,3-dithiol-2-ylidene)anthracen-9(10H)-one derivatives. Polymer, 2015, 68, 321-327.	3.8	12
113	Synthesis, Separation, and Hypermethod Characterization of Gold Nanoparticle Dimers Connected by a Rigid Rod Linker. Journal of Physical Chemistry C, 2015, 119, 17809-17817.	3.1	18
114	Acylhydrazones as Reversible Covalent Crosslinkers for Selfâ€Healing Polymers. Advanced Functional Materials, 2015, 25, 3295-3301.	14.9	203
115	Tuning the self-healing behavior of one-component intrinsic polymers. Polymer, 2015, 69, 321-329.	3.8	39
116	Self-healing response in supramolecular polymers based on reversible zinc–histidine interactions. Polymer, 2015, 69, 274-282.	3.8	66
117	Shape memory polymers: Past, present and future developments. Progress in Polymer Science, 2015, 49-50, 3-33.	24.7	739
118	Correlation between scratch healing and rheological behavior for terpyridine complex based metallopolymers. Journal of Materials Chemistry A, 2015, 3, 22145-22153.	10.3	79
119	Reversible oligomerization of 3-aryl-2-cyanothioacrylamides via [2 _s + 4 _s] cycloaddition to substituted 3,4-dihydro-2 <i>H</i> -thiopyrans. Designed Monomers and Polymers, 2015, 18, 627-640.	1.6	3
120	Synthesis and characterization of TEMPO- and viologen-polymers for water-based redox-flow batteries. Polymer Chemistry, 2015, 6, 7801-7811.	3.9	115
121	An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature, 2015, 527, 78-81.	27.8	766
122	Incorporation of core–shell particles into methacrylate based composites for improvement of the mechanical properties. Polymer Chemistry, 2015, 6, 5273-5280.	3.9	10
123	Homoleptic Tris(<i>α,ω</i> -alkanediyl)yttriates of the Type [{Li(dme)} ₃ {Y(CH ₂ -X-CH ₂) ₃ }] (X =) Tj ETQq1 1 0.784314 rgl	BT /Overlo	ock 10 Tf 50
	Organometallics. 2015, 34, 23-31.		
124	Synthesis of Functional Tripodal Thioacetates. Synthesis, 2014, 46, 3315-3318.	2.3	0
125	Synthesis of a Rigid Tetrahedral Linker with Thioether End Groups. Synthesis, 2014, 46, 475-478.	2.3	0
126	Poly(methacrylates) with Pendant Benzoquinone Units – Monomer Synthesis, Polymerization, and Electrochemical Behavior: Potential New Polymer Systems for Organic Batteries. Macromolecular Chemistry and Physics, 2014, 215, 1250-1256.	2.2	11

#	Article	IF	CITATIONS
127	Poly(2â€vinyl pyridine)â€ <i>blockâ€</i> Poly(ethylene oxide) Featuring a Furan Group at the Block Junction—Synthesis and Functionalization. Macromolecular Rapid Communications, 2014, 35, 916-921.	3.9	11
128	Efficient Cu(I) acetate atalyzed cycloaddition of multifunctional alkynes and azides: From solution to bulk polymerization. Journal of Polymer Science Part A, 2014, 52, 239-247.	2.3	24
129	Survey of Plasmonic Nanoparticles: From Synthesis to Application. Particle and Particle Systems Characterization, 2014, 31, 721-744.	2.3	40
130	Synthesis and Characterization of Poly(phenylacetylene)s with Ru(II) <i>Bis</i> â€Terpyridine Complexes in the Sideâ€Chain. Macromolecular Rapid Communications, 2014, 35, 747-751.	3.9	7
131	Monitoring the chemistry of self-healing by vibrational spectroscopy – current state and perspectives. Materials Today, 2014, 17, 57-69.	14.2	57
132	A rheological and spectroscopic study on the kinetics of selfâ€healing in a singleâ€component diels–alder copolymer and its underlying chemical reaction. Journal of Polymer Science Part A, 2014, 52, 1669-1675.	2.3	86
133	Tunable synthesis of poly(ethylene imine)–gold nanoparticle clusters. Chemical Communications, 2014, 50, 88-90.	4.1	45
134	Light-harvesting of polymerizable 4-hydroxy-1,3-thiazole monomers by energy transfer toward photoactive Os(<scp>ii</scp>) metal complexes in linear polymers. Polymer Chemistry, 2014, 5, 2715-2724.	3.9	22
135	Metalâ€Free Cycloaddition of Internal Alkynes and Multifunctional Azides Under Solventâ€Free Conditions. Macromolecular Chemistry and Physics, 2014, 215, 1603-1608.	2.2	27
136	Polymers with n-type nitroxide side groups: Synthesis and electrochemical characterization. European Polymer Journal, 2014, 61, 105-112.	5.4	16
137	Blocked isocyanates: an efficient tool for post-polymerization modification of polymers. Polymer Chemistry, 2014, 5, 2574.	3.9	18
138	Self-healing mechanism of metallopolymers investigated by QM/MM simulations and Raman spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 12422.	2.8	53
139	Application of phenolic radicals for antioxidants, as active materials in batteries, magnetic materials and ligands for metal-complexes. Journal of Materials Chemistry A, 2014, 2, 15234.	10.3	55
140	Modification of the Active Layer/PEDOT:PSS Interface by Solvent Additives Resulting in Improvement of the Performance of Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2014, 6, 11068-11081.	8.0	16
141	Polymers Based on Stable Phenoxyl Radicals for the Use in Organic Radical Batteries. Macromolecular Rapid Communications, 2014, 35, 882-887.	3.9	45
142	Oneâ€Component Intrinsic Selfâ€Healing Coatings Based on Reversible Crosslinking by Diels–Alder Cycloadditions. Macromolecular Chemistry and Physics, 2013, 214, 1636-1649.	2.2	128
143	Zn ^{II} <i>Bis</i> terpyridine Metallopolymers: Improved Processability by the Introduction of Polymeric Side Chains. Macromolecular Chemistry and Physics, 2013, 214, 1072-1080.	2.2	13
144	Metallopolymers as an Emerging Class of Self-Healing Materials. Advances in Polymer Science, 2013, , 239-257.	0.8	33

#	Article	IF	CITATIONS
145	Selfâ€Healing Materials via Reversible Crosslinking of Poly(ethylene oxide)â€ <i>Block</i> â€Poly(furfuryl) Tj ETQq1 4921-4932.	1 0.7843 14.9	14 rgBT /0 107
146	Impact of methanol top-casting or washing on the polymer solar cell performance. Proceedings of SPIE, 2013, , .	0.8	1
147	Combinatorial Screening of Inkjet Printed Ternary Blends for Organic Photovoltaics: Absorption Behavior and Morphology. ACS Combinatorial Science, 2013, 15, 410-418.	3.8	6
148	Orthogonal self-assembly of stimuli-responsive supramolecular polymers using one-step prepared heterotelechelic building blocks. Polymer Chemistry, 2013, 4, 113-123.	3.9	35
149	Formation of dynamic metallo-copolymers by inkjet printing: towards white-emitting materials. Journal of Materials Chemistry C, 2013, 1, 1812.	5.5	43
150	Incorporation of Polymerizable Osmium(II) Bis-terpyridine Complexes into PMMA Backbones. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 74-80.	3.7	11
151	A Homotelechelic bisâ€ŧerpyridine macroligand: Oneâ€step synthesis and its metalloâ€supramolecular selfâ€assembly. Journal of Polymer Science Part A, 2013, 51, 2006-2015.	2.3	16
152	Selfâ€Healing Polymer Coatings Based on Crosslinked Metallosupramolecular Copolymers. Advanced Materials, 2013, 25, 1634-1638.	21.0	319
153	Fluorescent monomers as building blocks for dye labeled polymers: synthesis and application in energy conversion, biolabeling and sensors. Chemical Society Reviews, 2013, 42, 5366.	38.1	207
154	Systematic Investigation of a Novel Lowâ€Bandgap Terpolymer Library via Inkjet Printing: Influence of Ink Properties and Processing Conditions. Macromolecular Chemistry and Physics, 2013, 214, 664-672.	2.2	4
155	Reactive Inkjet Printing of Cathodes for Organic Radical Batteries. Advanced Energy Materials, 2013, 3, 1025-1028.	19.5	67
156	Photoinduced polyaddition of multifunctional azides and alkynes. Polymer Chemistry, 2013, 4, 3938.	3.9	37
157	Amphiphilic supramolecular A(B)2A quasi-triblock copolymers. Polymer Chemistry, 2013, 4, 3177.	3.9	10
158	Self-healing metallopolymers based on cadmium bis(terpyridine) complex containing polymer networks. Polymer Chemistry, 2013, 4, 4966.	3.9	119
159	Synthesis and Charge–Discharge Studies of Poly(ethynylphenyl)galvinoxyles and Their Use in Organic Radical Batteries with Aqueous Electrolytes. Macromolecular Chemistry and Physics, 2013, 214, 2616-2623.	2.2	30
160	Fluorescence Study of Energy Transfer in PMMA Polymers with Pendant Oligoâ€Phenyleneâ€Ethynylenes. ChemPhysChem, 2013, 14, 170-178.	2.1	9
161	Triggered and self-healing systems using nanostructured materials. Nanotechnology Reviews, 2013, 2, 699-723.	5.8	11
162	Chelating Fluorene Dyes as Mono- and Ditopic 2-(1H-1,2,3-Triazol-4-yl)pyridine Ligands and Their Corresponding Ruthenium(II) Complexes. Synthesis, 2012, 44, 2287-2294.	2.3	6

#	Article	IF	CITATIONS
163	Powering up the Future: Radical Polymers for Battery Applications. Advanced Materials, 2012, 24, 6397-6409.	21.0	540
164	Fluorometric sensor based on bisterpyridine metallopolymer: detection of cyanide and phosphates in water. Analyst, The, 2012, 137, 2333.	3.5	53
165	Fluorometric, water-based sensors for the detection of nerve gas G mimics DMMP, DCP and DCNP. Chemical Communications, 2012, 48, 964-966.	4.1	50
166	Blue emitting side-chain pendant 4-hydroxy-1,3-thiazoles in polystyrenes synthesized by RAFT polymerization. European Polymer Journal, 2012, 48, 1339-1347.	5.4	16
167	Starâ€Shaped Block Copolymers by Copperâ€Catalyzed Azideâ€Alkyne Cycloaddition for Potential Drug Delivery Applications. Macromolecular Chemistry and Physics, 2012, 213, 2146-2156.	2.2	13
168	Photogenerated avenues in macromolecules containing Re(i), Ru(ii), Os(ii), and Ir(iii) metal complexes of pyridine-based ligands. Chemical Society Reviews, 2012, 41, 2222-2255.	38.1	211
169	Polymerization of free secondary amine bearing monomers by RAFT polymerization and other controlled radical techniques. Journal of Polymer Science Part A, 2012, 50, 1394-1407.	2.3	75
170	Bisâ€hydrophilic and functional triblock terpolymers based on polyethers: Synthesis and selfâ€assembly in solution. Journal of Polymer Science Part A, 2012, 50, 2914-2923.	2.3	15
171	Synthesis and characterization of polymethacrylates containing conjugated oligo(phenylene) Tj ETQq1 1 0.78431	4 _. rgBT /O	verlock 10 T
172	Synthesis and Characterization of Poly(methyl methacrylate) Backbone Polymers Containing Sideâ€Chain Pendant Ruthenium(II) Bisâ€Terpyridine Complexes With an Elongated Conjugated System. Macromolecular Chemistry and Physics, 2012, 213, 808-819.	2.2	18
173	Hydrodynamic and Molecular Study of Poly{4â€{4â€(hexyloxy)phenyl]ethynylphenyl methacrylate} in Dilute Solutions and Conformational Peculiarities of Brushâ€Like Macromolecules. Macromolecular Chemistry and Physics, 2012, 213, 904-916.	2.2	11
174	Induced Charge Effect by Co(II) Complexation on the Conformation of a Copolymer Containing a Bidentate 2â€(1,2,3â€Triazolâ€4â€yl)pyridine Chelating Unit. Macromolecular Chemistry and Physics, 2012, 213, 1339-1348.	2.2	11
175	Perfluorophenylâ€Terpyridine Ruthenium Complex as Monomer for Fast, Efficient, and Mild Metallopolymerizations. Macromolecular Rapid Communications, 2012, 33, 517-521.	3.9	23
176	Ruthenium(II) Metalloâ€Supramolecular Polymers of Clickâ€Derived Tridentate Ditopic Ligands. Macromolecular Rapid Communications, 2012, 33, 597-602.	3.9	29
177	Synthesis of a glycopolymeric PtII carrier and its induction of apoptosis in resistant cancer cells. Chemical Communications, 2012, 48, 6357.	4.1	23
178	The Radiative Decay Rates Tune the Emissive Properties of Ruthenium(II) Polypyridyl Complexes: A Computational Study. Chemistry - an Asian Journal, 2012, 7, 667-671.	3.3	17
179	Tandem mass spectrometry of poly(ethylene imine)s by electrospray ionization (ESI) and matrixâ€essisted laser desorption/ionization (MALDI). Journal of Mass Spectrometry, 2012, 47, 105-114.	1.6	27
180	Metal ontaining Polymers via Electropolymerization. Advanced Materials, 2012, 24, 332-345.	21.0	112

#	Article	IF	CITATIONS
181	Synthesis and Resonance Energy Transfer Study on a Random Terpolymer Containing a 2-(Pyridine-2-yl)thiazole Donor-Type Ligand and a Luminescent [Ru(bpy) ₂ (2-(triazol-4-yl)pyridine)] ²⁺ Chromophore. Macromolecules, 2011, 44, 6277-6287.	4.8	48
182	Functional soft materials from metallopolymers and metallosupramolecular polymers. Nature Materials, 2011, 10, 176-188.	27.5	922
183	Selfâ€Assembly of 3,6â€Bis(4â€triazolyl)pyridazine Ligands with Copper(I) and Silver(I) Ions: Timeâ€Dependant 2Dâ€NOESY and Ultracentrifuge Measurements. Chemistry - an Asian Journal, 2011, 6, 873-880.	3.3	18
184	Metalâ€Free 1,5â€Regioselective Azide–Alkyne [3+2] ycloaddition. Chemistry - an Asian Journal, 2011, 6, 2816-2824.	3.3	34
185	Synthesis, characterization, and micellization studies of coilâ€rodâ€coil and ABA ruthenium(II) terpyridine assemblies with Ï€â€conjugated electron acceptor systems. Journal of Polymer Science Part A, 2011, 49, 1396-1408.	2.3	13
186	The Marriage of Terpyridines and Inorganic Nanoparticles: Synthetic Aspects, Characterization Techniques, and Potential Applications. Advanced Materials, 2011, 23, 5728-5748.	21.0	77
187	A Heteroleptic Bis(tridentate) Ruthenium(II) Complex of a Clickâ€Derived Abnormal Carbene Pincer Ligand with Potential for Photosensitzer Application. Chemistry - A European Journal, 2011, 17, 5494-5498.	3.3	117
188	Ï€â€Conjugated 2,2′:6′,2″â€Bis(terpyridines): Systematical Tuning of the Optical Properties by Variation Linkage between the Terpyridines and the Ï€â€Conjugated System. European Journal of Organic Chemistry, 2010, 2010, 1859-1868.	of the 2.4	34
189	Selfâ€Healing Materials. Advanced Materials, 2010, 22, 5424-5430.	21.0	944
190	Systematic MALDIâ€TOF CID Investigation on Different Substituted mPEG 2000. Macromolecular Chemistry and Physics, 2010, 211, 677-684.	2.2	23
191	Ï€â€Conjugated Donor and Donor–Acceptor Metalloâ€Polymers. Macromolecular Rapid Communications, 2010, 31, 868-874.	3.9	40
192	Complexation of Terpyridineâ€Containing Dextrans: Toward Waterâ€Soluble Supramolecular Structures. Macromolecular Rapid Communications, 2010, 31, 921-927.	3.9	10
193	Anion Complexation by Triazolium "Ligands― Mono- and Bis-tridentate Complexes of Sulfate. Organic Letters, 2010, 12, 2710-2713.	4.6	95
194	N-Heterocyclic Donor- and Acceptor-Type Ligands Based on 2-(1H-[1,2,3]Triazol-4-yl)pyridines and Their Ruthenium(II) Complexes. Journal of Organic Chemistry, 2010, 75, 4025-4038.	3.2	60
195	Unexpected metal-mediated oxidation of hydroxymethyl groups to coordinated carboxylate groups by bis-cyclometalated iridium(iii) centers. New Journal of Chemistry, 2010, 34, 2622.	2.8	16
196	Dual hydrophilic polymers based on (meth)acrylic acid and poly(ethylene glycol) – synthesis and water uptake behavior. Polymer Chemistry, 2010, 1, 1669.	3.9	23
197	Synthesis and Characterization of New Self-Assembled Metallo-Polymers Containing Electron-Withdrawing and Electron-Donating Bis(terpyridine) Zinc(II) Moieties. Macromolecules, 2010, 43, 2759-2771.	4.8	87
198	2-[1-(1-Naphthyl)-1 <i>H</i> -1,2,3-triazol-4-yl]pyridine. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, 01146-01146.	0.2	3

#	Article	IF	CITATIONS
199	Azido- and Ethynyl-Substituted 2,2′:6′,2′′-Terpyridines as Suitable Substrates for Click Reactions. Synthesis, 2009, 2009, 1506-1512.	2.3	8
200	Synthesis of Rigid <i>ï€</i> â€Conjugated Monoâ€; Bisâ€; Trisâ€; and Tetrakis(terpyridine)s: Influence of the Degree and Pattern of Substitution on the Photophysical Properties. European Journal of Organic Chemistry, 2009, 2009, 801-809.	2.4	64
201	TPAâ€PPEs – New alternating donor copolymers for potential application in photovoltaic devices. Journal of Applied Polymer Science, 2009, 111, 1850-1861.	2.6	16
202	Selfâ€assembly of Ï€â€conjugated bis(terpyridine) ligands with zinc(II) ions: New metallosupramolecular materials for optoelectronic applications. Journal of Polymer Science Part A, 2009, 47, 4083-4098.	2.3	80
203	Click chemistry meets polymerization: Controlled incorporation of an easily accessible ruthenium(II) complex into a PMMA backbone via RAFT copolymerization. European Polymer Journal, 2009, 45, 3433-3441.	5.4	19
204	2â€(1 <i>H</i> â€1,2,3â€Triazolâ€4â€yl)â€Pyridine Ligands as Alternatives to 2,2′â€Bipyridines in Rutheni Chemistry - an Asian Journal, 2009, 4, 154-163.	um(II) Cor	nglexes.
205	2,2′:6′,2″-Terpyridine meets 2,6-bis(1H-1,2,3-triazol-4-yl)pyridine: tuning the electro-optical properties of ruthenium(ii) complexes. Dalton Transactions, 2009, , 787-794.	3.3	106
206	Advanced supramolecular initiator for nitroxide-mediated polymerizations containing both metal-ion coordination and hydrogen-bonding sites. Chemical Communications, 2009, , 3386.	4.1	54
207	Advancing the Solid State Properties of Metalloâ€Supramolecular Materials: Poly(<i>ε</i> â€caprolactone) Modified <i>Ï€</i> â€Conjugated Bis(terpyridine)s and their Zn(II) Based Metalloâ€Polymers. Macromolecular Rapid Communications, 2008, 29, 1679-1686.	3.9	37
208	Design and synthesis of ruthenium(II)-bipyridyl-containing polymers. , 2004, , .		1
209	New Methods for the Functionalization of Polymer Matrices with Thiomolybdate Clusters Applied for Hydrogen Evolution Reaction Catalysis. Advanced Energy and Sustainability Research, 0, , 2100085.	5.8	2
210	Selective Metal omplexation on Polymeric Templates and Their Investigation via Isothermal Titration Calorimetry. Macromolecular Chemistry and Physics, 0, , 2100295.	2.2	2
211	Comparing Microwave and Classical Synthesis of Oxymethylene Dimethyl Ethers. Macromolecular Chemistry and Physics, 0, , 2200020.	2.2	2
212	Hydrophilic crosslinked TEMPOâ€methacrylate copolymers – a straight forward approach towards aqueous semiâ€organic batteries. ChemSusChem, 0, , .	6.8	4
213	Oxidation of N,N,N,2,2,6,6â€heptamethylâ€piperidineâ€4â€ammonium chloride to waterâ€soluble Nâ€oxyl radica comparative study. European Journal of Organic Chemistry, 0, , .	als: A 2.4	1