Renato Contreras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/544562/publications.pdf

Version: 2024-02-01

148 papers 6,480 citations

35 h-index 71685 76 g-index

149 all docs 149 docs citations

149 times ranked 4100 citing authors

#	Article	IF	CITATIONS
1	Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron, 2002, 58, 4417-4423.	1.9	832
2	A direct evaluation of regional Fukui functions in molecules. Chemical Physics Letters, 1999, 304, 405-413.	2.6	420
3	Quantitative Characterization of the Local Electrophilicity of Organic Molecules. Understanding the Regioselectivity on Dielsâ^'Alder Reactions. Journal of Physical Chemistry A, 2002, 106, 6871-6875.	2.5	357
4	On the condensed Fukui function. Journal of Chemical Physics, 2000, 113, 2544-2551.	3.0	345
5	Quantitative characterization of the global electrophilicity pattern of some reagents involved in 1,3-dipolar cycloaddition reactions. Tetrahedron, 2003, 59, 3117-3125.	1.9	301
6	Quantum Mechanical Continuum Solvation Models for Ionic Liquids. Journal of Physical Chemistry B, 2012, 116, 9122-9129.	2.6	225
7	Sigma–pi separation of the electron localization function and aromaticity. Journal of Chemical Physics, 2004, 120, 1670-1673.	3.0	210
8	Self consistent field theory of solvent effects representation by continuum models: Introduction of desolvation contribution. Theoretica Chimica Acta, 1984, 65, 1-11.	0.8	166
9	A theoretical study on the regioselectivity of $1,3$ -dipolar cycloadditions using DFT-based reactivity indexes. Tetrahedron, 2004, 60, $11503-11509$.	1.9	150
10	Comparison between Experimental and Theoretical Scales of Electrophilicity in Benzhydryl Cations. Journal of Organic Chemistry, 2002, 67, 4747-4752.	3.2	133
11	Origin of the Synchronicity on the Transition Structures of Polar Dielsâ ⁻ 'Alder Reactions. Are These Reactions [4 + 2] Processes?. Journal of Organic Chemistry, 2003, 68, 3884-3890.	3.2	119
12	Definition of a Nucleophilicity Scale. Journal of Physical Chemistry A, 2006, 110, 8181-8187.	2.5	116
13	A Theoretical Study on the Relationship between Nucleophilicity and Ionization Potentials in Solution Phase. Journal of Physical Chemistry A, 2003, 107, 5588-5593.	2.5	100
14	Empirical Energyâ^'Density Relationships for the Analysis of Substituent Effects in Chemical Reactivity. Journal of the American Chemical Society, 2000, 122, 4756-4762.	13.7	92
15	Woodwardâ^'Hoffmann Rule in the Light of the Principles of Maximum Hardness and Minimum Polarizability:Â DFT and Ab Initio SCF Studies. Journal of the American Chemical Society, 2000, 122, 348-351.	13.7	90
16	Reactivity of the carbon–carbon double bond towards nucleophilic additions. A DFT analysis. Tetrahedron, 2004, 60, 6585-6591.	1.9	84
17	Electronic Contributions to the $\ddot{l}f$ pParameter of the Hammett Equation. Journal of Organic Chemistry, 2003, 68, 6060-6062.	3.2	80
18	Density Functional Theory Study for the Cycloaddition of 1,3-Butadienes with Dimethyl Acetylenedicarboxylate. Polar Stepwise vs Concerted Mechanisms. Journal of Physical Chemistry A, 2002, 106, 952-961.	2.5	77

#	Article	IF	CITATIONS
19	A proposal for a new local hardness as selectivity index. Chemical Physics Letters, 2004, 383, 181-187.	2.6	77
20	Solvent Effects on Electrophilicity. Journal of the American Chemical Society, 2001, 123, 5527-5531.	13.7	73
21	Structure-genotoxic activity relationships of pesticides: comparison of the results from several short-term assays. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 1985, 147, 343-356.	0.4	71
22	Experimental and Theoretical Studies on the Nucleofugality Patterns in the Aminolysis and Phenolysis of S-Aryl O-Aryl Thiocarbonates. Journal of Organic Chemistry, 2009, 74, 9173-9179.	3.2	69
23	Comparison among Four Different Ways to Condense the Fukui Function. Journal of Physical Chemistry A, 2005, 109, 3220-3224.	2.5	67
24	On the SCF theory of continuum solvent effects representation: Introduction of local dielectric effects. International Journal of Quantum Chemistry, 1985, 27, 293-301.	2.0	61
25	Nucleophilicity Index from Perturbed Electrostatic Potentials. Journal of Physical Chemistry A, 2007, 111, 2442-2447.	2.5	59
26	Spin-Philicity and Spin-Donicity as Auxiliary Concepts To Quantify Spin-Catalysis Phenomena. Journal of Physical Chemistry A, 2002, 106, 5353-5357.	2.5	50
27	A Computational Study of the Protein-Ligand Interactions in CDK2 Inhibitors: Using Quantum Mechanics/Molecular Mechanics Interaction Energy as a Predictor of the Biological Activity. Biophysical Journal, 2007, 92, 430-439.	0.5	49
28	Mechanistic pathways of aromatic nucleophilic substitution in conventional solvents and ionic liquids. New Journal of Chemistry, 2014, 38, 2611-2618.	2.8	48
29	Nonlocal (Pair Site) Reactivity from Second-Order Static Density Response Function:  Gas- and Solution-Phase Reactivity of the Acetaldehyde Enolate as a Test Case. Journal of Physical Chemistry A, 1999, 103, 1367-1375.	2.5	46
30	Relationships between the Electrophilicity Index and Experimental Rate Coefficients for the Aminolysis of Thiolcarbonates and Dithiocarbonates. Journal of Organic Chemistry, 2005, 70, 1754-1760.	3.2	44
31	A theoretical analysis of the gas-phase protonation of hydroxylamine, methyl-derivatives and aliphatic amino acids. Chemical Physics Letters, 1998, 293, 239-244.	2.6	42
32	Gutmann's Donor Numbers Correctly Assess the Effect of the Solvent on the Kinetics of S _N Ar Reactions in Ionic Liquids. Chemistry - A European Journal, 2016, 22, 13347-13351.	3.3	41
33	N-borane adducts of oxazolidines derived from ephedrine and pseudo- ephedrine. Study of stereochemistry by nuclear magnetic resonance. Tetrahedron, 1984, 40, 3829-3838.	1.9	40
34	A Density Functional Study of the Claisen Rearrangement of Allyl Aryl Ether, Allyl Arylamine, Allyl Aryl Thio Ether, and a Series of Meta-Substituted Molecules through Reactivity and Selectivity Profiles. Journal of Physical Chemistry A, 2002, 106, 11227-11233.	2.5	40
35	N-Heterocyclic carbene copper(<scp>i</scp>) complex-catalyzed synthesis of 2-aryl benzoxazoles and benzothiazoles. RSC Advances, 2016, 6, 82401-82408.	3.6	40
36	Group electrophilicity as a model of nucleofugality in nucleophilic substitution reactions. Chemical Physics Letters, 2006, 422, 340-344.	2.6	37

3

#	Article	IF	CITATIONS
37	Comparison between Experimental and Theoretical Scales of Electrophilicity Based on Reactivity Indexes. Journal of Physical Chemistry A, 2002, 106, 3964-3966.	2.5	35
38	Specific nucleophile–electrophile interactions in nucleophilic aromatic substitutions. Organic and Biomolecular Chemistry, 2013, 11, 2302.	2.8	35
39	Some relationships within the nonlocal (pair–site) chemical reactivity formalism of density functional theory. Journal of Chemical Physics, 2000, 113, 10861-10866.	3.0	33
40	Effect of electron-withdrawing substituents on the electrophilicity of carbonyl carbons. Tetrahedron, 2005, 61, 417-422.	1.9	33
41	The Chromophore Structure of the Cyanobacterial Phytochrome Cph1 As Predicted by Time-Dependent Density Functional Theory. Journal of Physical Chemistry B, 2008, 112, 16253-16256.	2.6	33
42	Relationship between nucleophilicity/electrophilicity indices and reaction mechanisms for the nucleophilic substitution reactions of carbonyl compounds. Journal of Physical Organic Chemistry, 2004, 17, 273-281.	1.9	32
43	Proton transfer in water polymers as a model for intime and solvent-separated ion pairs. The Journal of Physical Chemistry, 1984, 88, 1905-1908.	2.9	31
44	The Markovnikov Regioselectivity Rule in the Light of Site Activation Models. Journal of Physical Chemistry A, 2002, 106, 7844-7849.	2.5	31
45	Experimental and theoretical study on the substitution reactions of aryl 2,4-dinitrophenyl carbonates with quinuclidines. Tetrahedron, 2006, 62, 2555-2562.	1.9	31
46	Chemical Reactivity in the {N, NS, v(r)} Space. Journal of Physical Chemistry A, 2003, 107, 3831-3835.	2.5	29
47	Time-Dependent DFT on Phytochrome Chromophores: A Way to the Right Conformer. Journal of Physical Chemistry Letters, 2010, 1, 796-801.	4.6	29
48	Ï€-Strain-Induced Electrophilicity in Small Cycloalkynes: A DFT Analysis of the Polar Cycloaddition of Cyclopentyne towards Enol Ethers. European Journal of Organic Chemistry, 2006, 2006, 498-506.	2.4	28
49	The maximum hardness and minimum polarizability principles as the basis for the study of reaction profiles. Theoretical Chemistry Accounts, 2003, 110, 421-427.	1.4	26
50	Relationship between local electrophilicity and rate coefficients for the hydrolysis of carbenium ions. Tetrahedron, 2005, 61, 889-895.	1.9	26
51	On the variations of electronic chemical potential and chemical hardness induced by solvent effects. Chemical Physics Letters, 2006, 433, 54-57.	2.6	26
52	Empirical scale of nucleophilicity for substituted pyridines. Chemical Physics Letters, 2006, 422, 204-209.	2.6	25
53	Nucleofugality index in α-elimination reactions. Chemical Physics Letters, 2007, 439, 177-182.	2.6	25
54	Electrofugality index for benzhydryl derivatives. Chemical Physics Letters, 2007, 447, 375-378.	2.6	25

#	Article	IF	Citations
55	Hydrogen Bond Contribution to Preferential Solvation in S _N Ar Reactions. Journal of Physical Chemistry B, 2013, 117, 5908-5915.	2.6	25
56	Relationship between the electronic chemical potential and proton transfer barriers. Chemical Physics Letters, 1997, 269, 419-427.	2.6	24
57	HSAB Analysis of Charge Transfer in the Gas-Phase Acidâ^'Base Equilibria of Alkyl-Substituted Alcohols. Journal of Physical Chemistry A, 1999, 103, 11246-11249.	2.5	24
58	Global and Local Analysis of the Gas-Phase Acidity of Haloacetic Acids. Journal of Physical Chemistry A, 2000, 104, 5882-5887.	2.5	24
59	An unusual halogenated meroditerpenoid from Stypopodium flabelliforme: Studies by NMR spectroscopic and computational methods. Phytochemistry, 2009, 70, 1315-1320.	2.9	24
60	Reactivity Indices Profile: A Companion Tool of the Potential Energy Surface for the Analysis of Reaction Mechanisms. Nucleophilic Aromatic Substitution Reactions as Test Case. Journal of Organic Chemistry, 2013, 78, 1091-1097.	3.2	24
61	Topological analysis of the electron localization function applied to the study of the [1,3] sigmatropic shift of fluorine in 3-fluorpropene. Journal of Chemical Physics, 2001, 114, 23.	3.0	23
62	Experimental and theoretical study on the oxidation mechanism of dopamine in n-octyl pyridinium based ionic liquids–carbon paste modified electrodes. Electrochimica Acta, 2013, 111, 846-854.	5.2	23
63	Lewis Molecular Acidity of Ionic Liquids from Empirical Energy–Density Models. Journal of Physical Chemistry B, 2013, 117, 1911-1920.	2.6	23
64	On the mechanism of CO2 electro-cycloaddition to propylene oxides. Journal of CO2 Utilization, 2016, 16, 114-120.	6.8	23
65	Solvation energies from the linear response function of density functional theory. Chemical Physics Letters, 1996, 260, 236-242.	2.6	22
66	The Bonding Nature of Some Simple Sigmatropic Transition States from the Topological Analysis of the Electron Localization Function. Journal of Physical Chemistry A, 2002, 106, 11533-11539.	2.5	22
67	Relationship between the electrophilicity of substituting agents and substrate selectivity in Friedel–Crafts reactions. Tetrahedron, 2005, 61, 831-836.	1.9	22
68	Local hardness: An application to electrophilic additions. Chemical Physics Letters, 2007, 446, 170-175.	2.6	22
69	Changes in the S _N Ar reaction mechanism brought about by preferential solvation. RSC Advances, 2015, 5, 99322-99328.	3.6	22
70	Electrophilicity of quinones and its relationship with hydride affinity. Chemical Physics Letters, 2009, 471, 168-173.	2.6	21
71	Quantitative characterization of group electrophilicity and nucleophilicity for intramolecular Diels–Alder reactions. Organic and Biomolecular Chemistry, 2010, 8, 3678.	2.8	21
72	Synthesis and characterization of poly (ionic liquid) derivatives of N-alkyl quaternized poly(4-vinylpyridine). Reactive and Functional Polymers, 2018, 124, 64-71.	4.1	20

#	Article	IF	CITATIONS
73	Local reactivity index defined through the density of states describes the basicity of alkaline-exchanged zeolites. Journal of Chemical Physics, 2002, 116, 4311-4316.	3.0	19
74	Solvent effects in ionic liquids: empirical linear energy–density relationships. Physical Chemistry Chemical Physics, 2012, 14, 10041.	2.8	18
75	Theoretical insights into the E1cB/E2 mechanistic dichotomy of elimination reactions. Organic and Biomolecular Chemistry, 2019, 17, 9874-9882.	2.8	18
76	Theory of non-local (pair site) reactivity from model static-density response functions. Theoretical Chemistry Accounts, 1998, 99, 183-191.	1.4	17
77	A Semiquantitative Description of Electrostatics and Polarization Substituent Effects: Gas-Phase Acidâ^Base Equilibria as Test Cases. Journal of Physical Chemistry A, 2000, 104, 11993-11998.	2.5	17
78	On the Catalytic Effect of Water in the Intramolecular Diels–Alder Reaction of Quinone Systems: A Theoretical Study. Molecules, 2012, 17, 13687-13703.	3.8	17
79	Global and Local Reactivity and Activation Patterns of HOOX (X = H, NO2, CO2-, SO3-) Peroxides with Solvent Effects. Journal of Physical Chemistry A, 2003, 107, 10098-10104.	2.5	16
80	A computational ONIOM model for the description of the H-bond interactions between NU2058 analogues and CDK2 active site. Chemical Physics Letters, 2009, 479, 149-155.	2.6	16
81	Phenomenological chemical reactivity theory for mobile electrons. Theoretical Chemistry Accounts, 2010, 126, 45-54.	1.4	16
82	Are Electrophilicity and Electrofugality Related Concepts? A Density Functional Theory Study. Organic Letters, 2011, 13, 822-824.	4.6	16
83	Effect of the nature of the nucleophile and solvent on an S _N Ar reaction. New Journal of Chemistry, 2018, 42, 260-264.	2.8	16
84	A DFT Analysis of the Strain-Induced Regioselective [2+2] Cycloaddition of Benzyne Possessing Fused Four-Membered Ring. Letters in Organic Chemistry, 2005, 2, 68-73.	0.5	15
85	Hardness and softness kernels, and related indices in the spin polarized version of density functional theory. Chemical Physics Letters, 2006, 419, 37-43.	2.6	15
86	Homofugality: A new reactivity index describing the leaving group ability in homolytic substitution reactions. Chemical Physics Letters, 2006, 424, 437-442.	2.6	15
87	Site activation effects promoted by intramolecular hydrogen bond interactions in SNAr reactions. RSC Advances, 2014, 4, 30638-30643.	3.6	15
88	Theoretical study of lithium-fluoride and lithium-chloride ion pairs in aqueous solution. AnSCF-CNDO/2 approach including continuum solvent effects. International Journal of Quantum Chemistry, 1986, 30, 581-590.	2.0	14
89	Molecular modelling of lithium intercalation in. Journal of Physics Condensed Matter, 1997, 9, 3011-3021.	1.8	14
90	Two state reactivity mechanism for the rearrangement of hydrogen peroxynitrite to nitric acid. Chemical Physics Letters, 2008, 457, 216-221.	2.6	14

#	Article	IF	CITATIONS
91	Structureâ€"reactivity relationships for electrophilic sugars in interaction with nucleophilic biological targets. Bioorganic and Medicinal Chemistry, 2008, 16, 3184-3190.	3.0	14
92	Reactivity of benzohydrazide derivatives towards acetylation reaction. Experimental and theoretical studies. Chemical Physics Letters, 2010, 488, 86-89.	2.6	14
93	Bond Fukui Functions As Descriptor of the Electron Density Reorganization in π Conjugated Systems. Journal of Organic Chemistry, 2012, 77, 90-95.	3.2	14
94	Regional Electrophilic and Nucleophilic Fukui Functions Efficiently Highlight the Lewis Acidic/Basic Regions in Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 3696-3701.	2.6	14
95	Sites of protonation of N 2-substituted N 1, N 1-dimethyl formamidines from regional reactivity indices. Computational and Theoretical Chemistry, 1999, 493, 267-273.	1.5	13
96	A density functional theory analysis of the gas and solution phase isomerization reactions of MCN, (M) Tj ETQq0	0 <u>0 rg</u> BT /	Overlock 10
97	Probing the hydride transfer process in the lumiflavine–1-methylnicotinamide model system using group softness. Tetrahedron, 2004, 60, 4189-4196.	1.9	12
98	Theoretical Study on CDK2 Inhibitors Using a Global Softness Obtained from the Density of States. Journal of Physical Chemistry B, 2007, 111, 3293-3297.	2.6	12
99	Higher order derivatives for nuclear indexes in the framework of density functional theory. Journal of Chemical Physics, 2001, 115, 6822-6826.	3.0	11
100	Local reactivity index as descriptor of benzene adsorption in cluster models of exchanged zeolite-Y. Chemical Physics Letters, 2004, 383, 612-616.	2.6	11
101	Non-electrostatic components of short and strong hydrogen bonds induced by compression inside fullerenes. Chemical Physics Letters, 2010, 486, 119-122.	2.6	11
102	Permanent group effect on nucleofugality in aryl benzoates. Chemical Physics Letters, 2010, 498, 221-225.	2.6	11
103	Activation of Electrophile/Nucleophile Pair by a Nucleophilic and Electrophilic Solvation in a SNAr Reaction. Frontiers in Chemistry, 2018, 6, 509.	3.6	11
104	Energy-density relationships for the treatment of ion solvation within density-functional theory. Physical Review A, 1994, 49, 3439-3444.	2.5	10
105	Analysis of gas phase proton transfer using density functional theory. The H2O âc HX (Xî—»F, Cl and OH) system. Chemical Physics Letters, 1996, 256, 15-20.	2.6	10
106	Exploring Two-State Reactivity Pathways in the Cycloaddition Reactions of Triplet Methylene. Journal of Physical Chemistry A, 2005, 109, 4178-4184.	2.5	10
107	Understanding the influence of Lewis acids in the regioselectivity of the Diels–Alder reactions of 2-methoxy-5-methyl-1,4-benzoquinone: A DFT study. Computational and Theoretical Chemistry, 2009, 902, 103-108.	1.5	10
108	Theoretical study of alkoxide ion solvation and its effect on the relative acidity of alcohols in DMSO. Chemical Physics Letters, 1986, 127, 169-171.	2.6	9

#	Article	IF	CITATIONS
109	A model for the charge capacity of 1T-TiS2 intercalated with Li. International Journal of Quantum Chemistry, 1995, 56, 819-823.	2.0	9
110	Relationship between solvation energy, chemical potential and hardness variations. Computational and Theoretical Chemistry, 1997, 390, 169-175.	1.5	9
111	β-Scission of thioimidoyl radicals (R1–N–CS–R2): A theoretical scale of radical leaving group ability. Chemical Physics Letters, 2007, 443, 383-388.	2.6	9
112	On the Role of Short and Strong Hydrogen Bonds on the Mechanism of Action of a Model Chymotrypsine Active Site. Journal of Physical Chemistry A, 2009, 113, 5769-5772.	2.5	9
113	Lewis Acidity/Basicity Changes in Imidazolium Based Ionic Liquids Brought About by Impurities. Journal of Physical Chemistry B, 2015, 119, 13160-13166.	2.6	9
114	Methodological Issues in First-Principle Calculations of CH ₃ NH ₃ Pbl ₃ Perovskite Surfaces: Quantum Confinement and Thermal Motion. ACS Omega, 2020, 5, 29477-29491.	3.5	9
115	Understanding the stereo―and regioselectivities of the polar Diels–Alder reactions between 2â€acetylâ€1,4â€benzoquinone and methyl substituted 1,3â€butadienes: a DFT study. Journal of Physical Organic Chemistry, 2009, 22, 578-584.	1.9	8
116	Kinetic and theoretical study on nucleofugality in the phenolysis of 3-nitrophenyl and 4-nitrophenyl 4-cyanophenyl thionocarbonates. Chemical Physics Letters, 2013, 572, 130-135.	2.6	8
117	Philicity and Fugality Scales for Organic Reactions. Advances in Chemistry, 2014, 2014, 1-13.	1.1	8
118	Mechanistic insights into the ANRORC-like rearrangement between methylhydrazine and 1,2,4-oxadiazole derivatives. Organic and Biomolecular Chemistry, 2015, 13, 9439-9444.	2.8	8
119	Solvent effect on a model SNAr reaction in ionic liquid/water mixtures at different compositions. New Journal of Chemistry, 2018, 42, 9645-9650.	2.8	8
120	Self-consistent reaction field calculations on the proton transfer in ammonia-formic acid systems as a model for hydrogen bonding in amino acids in solution. International Journal of Quantum Chemistry, 1988, 33, 41-52.	2.0	7
121	Wave function instabilities in the cis–trans isomerization and singlet–triplet energy gaps in a push–pull compound. Journal of Chemical Physics, 2003, 119, 4112-4116.	3.0	7
122	Invariance of electrophilicity of independent fragments. Application to intramolecular Diels–Alder reactions. Chemical Physics Letters, 2010, 499, 272-277.	2.6	7
123	How Meaningful Is the Halogen Bonding in 1-Ethyl-3-methyl Imidazolium-Based Ionic Liquids for CO ₂ Capture?. Journal of Physical Chemistry B, 2018, 122, 7907-7914.	2.6	7
124	Quantum mechanical calculation of thermodynamic functions of solvation of ammonium ions in water. Canadian Journal of Chemistry, 1985, 63, 1746-1749.	1.1	6
125	On the role of water in the hydrogen bond network in DESs: an ab initio molecular dynamics and quantum mechanical study on the urea–betaine system. Physical Chemistry Chemical Physics, 2021, 23, 1994-2004.	2.8	6
126	On the SCF theory of continuum solvent effects representation II. Quantum chemical calculation of thermodynamic properties of some acid-base equilibria in solution. International Journal of Quantum Chemistry, 1986, 30, 573-584.	2.0	5

#	Article	IF	CITATIONS
127	Electrostatic and Non-Electrostatic Contributions to Hydrogen Bonding and Proton Transfer in Solution Phase. The Journal of Physical Chemistry, 1996, 100, 19326-19332.	2.9	5
128	Basicity and solvent effects on hydrogen bonding in NR3���zHCOOH (R=H, CH3) model systems. International Journal of Quantum Chemistry, 1999, 74, 387-394.	2.0	4
129	Proton transport catalysis in intramolecular rearrangements: A density functional theory study. Chemical Physics Letters, 2008, 464, 271-275.	2.6	4
130	On the Principle of Spin Potential Equalization. Journal of Physical Chemistry A, 2009, 113, 1390-1396.	2.5	4
131	On the Gas-Phase Electronic Chemical Potential of Anions. Journal of Chemical Theory and Computation, 2009, 5, 2944-2949.	5.3	4
132	Endohedral Cluster of Li ₁₀ 0 with <i>T</i> _{<i>d</i>} Symmetry. Journal of Physical Chemistry A, 2009, 113, 13451-13456.	2.5	3
133	Predicting the reaction mechanism of nucleophilic substitutions at carbonyl and thiocarbonyl centres of esters and thioesters. Journal of Physical Organic Chemistry, 2012, 25, 1359-1364.	1.9	3
134	Quantitative characterization of the global philicity patterns of common diene/dienophile pairs in cycloaddition reactions II: the interacting pair model. Tetrahedron Letters, 2015, 56, 1767-1770.	1.4	3
135	Gutmann's Donor and Acceptor Numbers for Ionic Liquids and Deep Eutectic Solvents. Frontiers in Chemistry, 2022, 10, 861379.	3.6	3
136	REACTIVITY OF SULFUR(II) COMPOUNDS. CHEMICAL PROPERTIES AND FRONTIER MOLECULAR ORBITAL ANALYSIS. Phosphorus, Sulfur and Silicon and the Related Elements, 1991, 55, 219-228.	1.6	2
137	The electronic chemical potential as a basis for a cluster model approximation for intercalation of Li in 1T $\hat{a} \in$ TiS2. Computational and Theoretical Chemistry, 1995, 335, 161-166.	1.5	2
138	Hydrogen bonding and dissociation effects on the gas phase proton transfer reactions of ozone. Theoretical Chemistry Accounts, 1998, 99, 60-63.	1.4	2
139	Origins of the ANRORC reactivity in nitroimidazole derivatives. RSC Advances, 2016, 6, 25215-25221.	3.6	2
140	Inertia defects of urea. Journal of Molecular Structure, 1986, 142, 91-92.	3.6	1
141	Desolvation effects on the dissociation energy of diatomic molecules: Ab initio study of the dissociation of Li-F in polar media. Theoretica Chimica Acta, 1993, 86, 211-217.	0.8	1
142	Molecular modelling of the photoconduction mechanism by charged solitons intrans-polyacetylene: I. Molecular Engineering, 1996, 6, 229-237.	0.2	1
143	A DFT Study of the Regioselectivity in Intramolecular Diels-Alder Reactions with Formation of a Tricyclodecane Skeleton. Letters in Organic Chemistry, 2011, 8, 125-131.	0.5	1
144	Theoretical Basis for the Treatment of Solvent Effects in the Context of Density Functional Theory. , 2002, , 81-123.		1

#	Article	IF	CITATIONS
145	A Local Extension of the Electrophilicity Index Concept. Journal of the Mexican Chemical Society, 2017, 56, .	0.6	1
146	Origin of the Synchronicity on the Transition Structures of Polar Diels—Alder Reactions. Are these Reactions [4 + 2] Processes?. ChemInform, 2003, 34, no.	0.0	0
147	Microbial Transformation of Marine Halogenated Sesquiterpenes. Natural Product Communications, 2010, 5, 1934578X1000501.	0.5	O
148	Quantum mechanical and molecular dynamic approaches to describe solvation effects by neoteric solvents. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100395.	5.9	0