Ulrika Warpman Berglund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5445216/publications.pdf

Version: 2024-02-01

38 papers

1,811 citations

489802 18 h-index 39 g-index

45 all docs 45 docs citations

45 times ranked

2993 citing authors

#	Article	IF	CITATIONS
1	Coexpression of MTH1 and PMS2 Is Associated with Advanced Disease and Disease Progression after Therapy in Melanoma. Journal of Investigative Dermatology, 2022, 142, 736-740.e6.	0.3	4
2	Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress. Nature Cancer, 2022, 3, 156-172.	5.7	30
3	Inhibition of Oxidized Nucleotide Sanitation By TH1579 and Conventional Chemotherapy Cooperatively Enhance Oxidative DNA Damage and Survival in AML. Molecular Cancer Therapeutics, 2022, 21, 703-714.	1.9	3
4	Small-molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function. Science, 2022, 376, 1471-1476.	6.0	20
5	Crystal structures of NUDT15 variants enabled by a potent inhibitor reveal the structural basis for thiopurine sensitivity. Journal of Biological Chemistry, 2021, 296, 100568.	1.6	8
6	Karonudib has potent anti-tumor effects in preclinical models of B-cell lymphoma. Scientific Reports, 2021, 11, 6317.	1.6	5
7	NEIL3 Prevents Senescence in Hepatocellular Carcinoma by Repairing Oxidative Lesions at Telomeres during Mitosis. Cancer Research, 2021, 81, 4079-4093.	0.4	19
8	NUDT15-mediated hydrolysis limits the efficacy of anti-HCMV drug ganciclovir. Cell Chemical Biology, 2021, 28, 1693-1702.e6.	2.5	9
9	MTH1 Inhibitors for the Treatment of Psoriasis. Journal of Investigative Dermatology, 2021, 141, 2037-2048.e4.	0.3	10
10	MTH1 as a target to alleviate T cell driven diseases by selective suppression of activated T cells. Cell Death and Differentiation, $2021, \dots$	5.0	6
11	MTH1 Inhibitor TH1579 Induces Oxidative DNA Damage and Mitotic Arrest in Acute Myeloid Leukemia. Cancer Research, 2021, 81, 5733-5744.	0.4	15
12	Broadly Active Antiviral Compounds Disturb Zika Virus Progeny Release Rescuing Virus-Induced Toxicity in Brain Organoids. Viruses, 2021, 13, 37.	1.5	15
13	AXL and CAV-1 play a role for MTH1 inhibitor TH1579 sensitivity in cutaneous malignant melanoma. Cell Death and Differentiation, 2020, 27, 2081-2098.	5.0	20
14	Development of a chemical probe against NUDT15. Nature Chemical Biology, 2020, 16, 1120-1128.	3.9	14
15	Targeting OGG1 arrests cancer cell proliferation by inducing replication stress. Nucleic Acids Research, 2020, 48, 12234-12251.	6.5	29
16	In silico Druggability Assessment of the NUDIX Hydrolase Protein Family as a Workflow for Target Prioritization. Frontiers in Chemistry, 2020, 8, 443.	1.8	16
17	TH1579, MTH1 inhibitor, delays tumour growth and inhibits metastases development in osteosarcoma model. EBioMedicine, 2020, 53, 102704.	2.7	23
18	MutT homologue 1 (MTH1) removes N6-methyl-dATP from the dNTP pool. Journal of Biological Chemistry, 2020, 295, 4761-4772.	1.6	10

#	Article	IF	Citations
19	MTH1 Inhibitor TH588 Disturbs Mitotic Progression and Induces Mitosis-Dependent Accumulation of Genomic 8-oxodG. Cancer Research, 2020, 80, 3530-3541.	0.4	16
20	<i>Ex vivo</i> culture of cells derived from circulating tumour cell xenograft to support small cell lung cancer research and experimental therapeutics. British Journal of Pharmacology, 2019, 176, 436-450.	2.7	34
21	Computational and Experimental Druggability Assessment of Human DNA Glycosylases. ACS Omega, 2019, 4, 11642-11656.	1.6	19
22	Karonudib is a promising anticancer therapy in hepatocellular carcinoma. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591986696.	1.4	23
23	Crystal Structures and Inhibitor Interactions of Mouse and Dog MTH1 Reveal Species-Specific Differences in Affinity. Biochemistry, 2018, 57, 593-603.	1.2	11
24	Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation. Science, 2018, 362, 834-839.	6.0	156
25	MutT homologue 1 (MTH1) catalyzes the hydrolysis of mutagenic O6-methyl-dGTP. Nucleic Acids Research, 2018, 46, 10888-10904.	6.5	13
26	A patient-derived xenograft pre-clinical trial reveals treatment responses and a resistance mechanism to karonudib in metastatic melanoma. Cell Death and Disease, 2018, 9, 810.	2.7	38
27	Identification of Triazolothiadiazoles as Potent Inhibitors of the dCTP Pyrophosphatase 1. Journal of Medicinal Chemistry, 2017, 60, 2148-2154.	2.9	14
28	Global survey of the immunomodulatory potential of common drugs. Nature Chemical Biology, 2017, 13, 681-690.	3.9	53
29	Piperazin-1-ylpyridazine Derivatives Are a Novel Class of Human dCTP Pyrophosphatase 1 Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 4279-4292.	2.9	19
30	Fragment-Based Discovery and Optimization of Enzyme Inhibitors by Docking of Commercial Chemical Space. Journal of Medicinal Chemistry, 2017, 60, 8160-8169.	2.9	32
31	Mutations in Cancer Cause Gain of Cysteine, Histidine, and Tryptophan at the Expense of a Net Loss of Arginine on the Proteome Level. Biomolecules, 2017, 7, 49.	1.8	19
32	Glioblastoma and glioblastoma stem cells are dependent on functional MTH1. Oncotarget, 2017, 8, 84671-84684.	0.8	29
33	Discovery of the First Potent and Selective Inhibitors of Human dCTP Pyrophosphatase 1. Journal of Medicinal Chemistry, 2016, 59, 1140-1148.	2.9	40
34	Cancer-Specific Synthetic Lethality between ATR and CHK1 Kinase Activities. Cell Reports, 2016, 14, 298-309.	2.9	105
35	Hypoxic Signaling and the Cellular Redox Tumor Environment Determine Sensitivity to MTH1 Inhibition. Cancer Research, 2016, 76, 2366-2375.	0.4	40
36	Crystal structure, biochemical and cellular activities demonstrate separate functions of MTH1 and MTH2. Nature Communications, 2015, 6, 7871.	5.8	96

#	Article	IF	CITATIONS
37	MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature, 2014, 508, 215-221.	13.7	419
38	Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature, 2014, 508, 222-227.	13.7	336