
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5444805/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckland, N Z), 2015, 3, 83.	1.9	1,372
2	BM mesenchymal stromal cell–derived exosomes facilitate multiple myeloma progression. Journal of Clinical Investigation, 2013, 123, 1542-1555.	3.9	661
3	CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood, 2009, 113, 4341-4351.	0.6	398
4	MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood, 2009, 113, 6669-6680.	0.6	297
5	Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood, 2012, 119, 5782-5794.	0.6	268
6	LNA-mediated anti–miR-155 silencing in low-grade B-cell lymphomas. Blood, 2012, 120, 1678-1686.	0.6	152
7	Integrin β7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion. Blood, 2011, 117, 6202-6213.	0.6	134
8	Canonical and noncanonical Hedgehog pathway in the pathogenesis of multiple myeloma. Blood, 2012, 120, 5002-5013.	0.6	121
9	3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma. Biomaterials, 2015, 73, 70-84.	5.7	120
10	SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood, 2008, 112, 150-158.	0.6	115
11	microRNA-dependent modulation of histone acetylation in Waldenström macroglobulinemia. Blood, 2010, 116, 1506-1514.	0.6	114
12	microRNA expression in the biology, prognosis, and therapy of Waldenström macroglobulinemia. Blood, 2009, 113, 4391-4402.	0.6	113
13	Cell Trafficking of Endothelial Progenitor Cells in Tumor Progression. Clinical Cancer Research, 2013, 19, 3360-3368.	3.2	104
14	RhoA and Rac1 GTPases play major and differential roles in stromal cell–derived factor-1–induced cell adhesion and chemotaxis in multiple myeloma. Blood, 2009, 114, 619-629.	0.6	103
15	P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment. Blood, 2012, 119, 1468-1478.	0.6	103
16	Dual targeting of the PI3K/Akt/mTOR pathway as an antitumor strategy in Waldenstrom macroglobulinemia. Blood, 2010, 115, 559-569.	0.6	93
17	Advancements in Tumor Targeting Strategies for Boron Neutron Capture Therapy. Pharmaceutical Research, 2015, 32, 2824-2836.	1.7	81
18	The role of P-glycoprotein in drug resistance in multiple myeloma. Leukemia and Lymphoma, 2015, 56, 26-33	0.6	81

#	Article	IF	CITATIONS
19	Defining the role of TORC1/2 in multiple myeloma. Blood, 2011, 118, 6860-6870.	0.6	72
20	Spotlight on ixazomib: potential in the treatment of multiple myeloma. Drug Design, Development and Therapy, 2016, 10, 217.	2.0	69
21	Drug Delivery Approaches for the Treatment of Cervical Cancer. Pharmaceutics, 2016, 8, 23.	2.0	65
22	<scp>CXCL</scp> 12 and <scp>CXCR</scp> 7 are relevant targets to reverse cell adhesionâ€mediated drug resistance in multiple myeloma. British Journal of Haematology, 2017, 179, 36-49.	1.2	63
23	Targeting CD47 as a Novel Immunotherapy for Multiple Myeloma. Cancers, 2020, 12, 305.	1.7	56
24	Tumor microenvironment-targeted nanoparticles loaded with bortezomib and ROCK inhibitor improve efficacy in multiple myeloma. Nature Communications, 2020, 11, 6037.	5.8	51
25	The Role of Hypoxia and Exploitation of the Hypoxic Environment in Hematologic Malignancies. Molecular Cancer Research, 2014, 12, 1347-1354.	1.5	50
26	Enhancing proteasome-inhibitory activity and specificity of bortezomib by CD38 targeted nanoparticles in multiple myeloma. Journal of Controlled Release, 2018, 270, 158-176.	4.8	49
27	Carfilzomib-Dependent Selective Inhibition of the Chymotrypsin-like Activity of the Proteasome Leads to Antitumor Activity in Waldenstrom's Macroglobulinemia. Clinical Cancer Research, 2011, 17, 1753-1764.	3.2	43
28	Molecularly Targeted Therapies in Multiple Myeloma. Leukemia Research and Treatment, 2014, 2014, 1-8.	2.0	43
29	Phase I/II trial of the CXCR4 inhibitor plerixafor in combination with bortezomib as a chemosensitization strategy in relapsed/refractory multiple myeloma. American Journal of Hematology, 2019, 94, 1244-1253.	2.0	42
30	Localized Delivery of Cisplatin to Cervical Cancer Improves Its Therapeutic Efficacy and Minimizes Its Side Effect Profile. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1483-1494.	0.4	37
31	PI3KCA plays a major role in multiple myeloma and its inhibition with BYL719 decreases proliferation, synergizes with other therapies and overcomes stroma-induced resistance. British Journal of Haematology, 2014, 165, 89-101.	1.2	34
32	Tumor-associated macrophages in multiple myeloma: advances in biology and therapy. , 2022, 10, e003975.		33
33	CXCR7-dependent angiogenic mononuclear cell trafficking regulates tumor progression in multiple myeloma. Blood, 2014, 124, 1905-1914.	0.6	32
34	Nanoparticle delivery systems, general approaches, and their implementation in multiple myeloma. European Journal of Haematology, 2017, 98, 529-541.	1.1	31
35	Eph-B2/Ephrin-B2 Interaction Plays a Major Role in the Adhesion and Proliferation of Waldenstrom's Macroglobulinemia. Clinical Cancer Research, 2012, 18, 91-104.	3.2	30
36	Tariquidar sensitizes multiple myeloma cells to proteasome inhibitors via reduction of hypoxia-induced P-gp-mediated drug resistance. Leukemia and Lymphoma, 2017, 58, 2916-2925.	0.6	30

#	Article	IF	CITATIONS
37	Targeting E-selectin to Tackle Cancer Using Uproleselan. Cancers, 2021, 13, 335.	1.7	30
38	Nanoparticle T-cell engagers as a modular platform for cancer immunotherapy. Leukemia, 2021, 35, 2346-2357.	3.3	28
39	Inhibition of P-Selectin and PSGL-1 Using Humanized Monoclonal Antibodies Increases the Sensitivity of Multiple Myeloma Cells to Bortezomib. BioMed Research International, 2015, 2015, 1-8.	0.9	27
40	Selinexor Overcomes Hypoxia-Induced Drug Resistance in Multiple Myeloma. Translational Oncology, 2017, 10, 632-640.	1.7	26
41	Thermal Sensitive Liposomes Improve Delivery of Boronated Agents for Boron Neutron Capture Therapy. Pharmaceutical Research, 2019, 36, 144.	1.7	26
42	The Non-Coding RNA Landscape of Plasma Cell Dyscrasias. Cancers, 2020, 12, 320.	1.7	24
43	Hypoxia Promotes Dissemination and Colonization in New Bone Marrow Niches in Waldenström Macroglobulinemia. Molecular Cancer Research, 2015, 13, 263-272.	1.5	23
44	A <scp>CD</scp> 138â€independent strategy to detect minimal residual disease and circulating tumour cells in multiple myeloma. British Journal of Haematology, 2016, 173, 70-81.	1.2	20
45	Tris DBA palladium overcomes hypoxia-mediated drug resistance in multiple myeloma. Leukemia and Lymphoma, 2016, 57, 1677-1686.	0.6	20
46	Inhibition of SDF-1-induced migration of oncogene-driven myeloid leukemia by the L-RNA aptamer (Spiegelmer), NOX-A12, and potentiation of tyrosine kinase inhibition. Oncotarget, 2017, 8, 109973-109984.	0.8	19
47	Direct measurement of hypoxia in a xenograft multiple myeloma model by optical-resolution photoacoustic microscopy. Cancer Biology and Therapy, 2017, 18, 101-105.	1.5	18
48	Inhibition of E-Selectin (GMI-1271) or E-selectin together with CXCR4 (GMI-1359) re-sensitizes multiple myeloma to therapy. Blood Cancer Journal, 2019, 9, 68.	2.8	18
49	The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting. Laboratory Investigation, 2014, 94, 881-892.	1.7	17
50	Delivery systems for brachytherapy. Journal of Controlled Release, 2014, 192, 19-28.	4.8	16
51	Stem Cell Transfusion Restores Immune Function in Radiation-Induced Lymphopenic C57BL/6 Mice. Cancer Research, 2015, 75, 3442-3445.	0.4	16
52	A Hypoxia-Targeted Boron Neutron Capture Therapy Agent for the Treatment of Glioma. Pharmaceutical Research, 2016, 33, 2530-2539.	1.7	16
53	Identification of ILK as a novel therapeutic target for acute and chronic myeloid leukemia. Leukemia Research, 2015, 39, 1299-1308.	0.4	15
54	Mechanisms of Activity of the TORC1 Inhibitor Everolimus in Waldenstrom Macroglobulinemia. Clinical Cancer Research, 2012, 18, 6609-6622.	3.2	14

#	Article	IF	CITATIONS
55	Targeting survival and cell trafficking in multiple myeloma and <scp>W</scp> aldenstrom macroglobulinemia using panâ€class <scp>I PI</scp> 3 <scp>K</scp> inhibitor, buparlisib. American Journal of Hematology, 2014, 89, 1030-1036.	2.0	14
56	Newly established myeloma-derived stromal cell line MSP-1 supports multiple myeloma proliferation, migration, and adhesion and induces drug resistance more than normal-derived stroma. Haematologica, 2016, 101, e307-e311.	1.7	11
57	BRD9 degraders as chemosensitizers in acute leukemia and multiple myeloma. Blood Cancer Journal, 2022, 12, .	2.8	11
58	3D tissue-engineered bone marrow: what does this mean for the treatment of multiple myeloma?. Future Oncology, 2016, 12, 1545-1547.	1.1	10
59	PYK2/FAK inhibitors reverse hypoxia-induced drug resistance in multiple myeloma. Haematologica, 2019, 104, e310-e313.	1.7	10
60	CD47-targeting antibodies as a novel therapeutic strategy in hematologic malignancies. Leukemia Research Reports, 2021, 16, 100268.	0.2	10
61	Bispecific T Cell Engagers for the Treatment of Multiple Myeloma: Achievements and Challenges. Cancers, 2021, 13, 2853.	1.7	9
62	Nanoparticle T cell engagers for the treatment of acute myeloid leukemia. Oncotarget, 2021, 12, 1878-1885.	0.8	8
63	Liposomal phytohemagglutinin: In vivo T ell activator as a novel pan ancer immunotherapy. Journal of Cellular and Molecular Medicine, 2022, 26, 940-944.	1.6	7
64	CXCR4-targeted PET imaging using ⁶⁴ Cu-AMD3100 for detection of Waldenström Macroglobulinemia. Cancer Biology and Therapy, 2020, 21, 52-60.	1.5	6
65	A pilot study of 3D tissue-engineered bone marrow culture as a tool to predict patient response to therapy in multiple myeloma. Scientific Reports, 2021, 11, 19343.	1.6	6
66	Biomaterials for cancer immunotherapy. , 2020, , 499-526.		5
67	3D tissue engineered plasma cultures support leukemic proliferation and induces drug resistance. Leukemia and Lymphoma, 2021, 62, 1-9.	0.6	5
68	Synthesis, equilibrium, and biological study of a C-7 glucose boronic acid derivative as a potential candidate for boron neutron capture therapy. Bioorganic and Medicinal Chemistry, 2022, 59, 116659.	1.4	5
69	Phase I/II Trial of Plerixafor and Bortezomib As a Chemosensitization Strategy In Relapsed Or Relapsed/Refractory Multiple Myeloma. Blood, 2013, 122, 1947-1947.	0.6	4
70	Selective Inhibition of the Chymotrypsin-Like Activity of the Immunoproteasome and Constitutive Proteasome Represents a Valid Anti-Tumor Strategy in Waldenstrom Macroglobulinemia Blood, 2009, 114, 4911-4911.	0.6	3
71	Inhibition of HIF-1a By PX-478 Normalizes Blood Vessels, Improves Drug Delivery and Suppresses Progression and Dissemination in Multiple Myeloma. Blood, 2020, 136, 3-3.	0.6	3
72	RAD001 Exerts Anti-Tumor Activity in Waldenstrom Macroglobulinemia Blood, 2009, 114, 3732-3732.	0.6	2

#	Article	IF	CITATIONS
73	Stroma-Derived Exosomes Mediate Oncogenesis in Multiple Myeloma. Blood, 2011, 118, 625-625.	0.6	2
74	Phase I/II Trial of Plerixafor and Bortezomib As a Chemosensitization Strategy in Relapsed or Relapsed/Refractory Multiple Myeloma. Blood, 2014, 124, 5777-5777.	0.6	2
75	Response: Sensitization initiated. Blood, 2009, 114, 926-927.	0.6	1
76	MicroRNA Changes Occur in Multiple Myeloma Cells in the Context of Bone Marrow Milieu Blood, 2009, 114, 1785-1785.	0.6	1
77	Phase I Trial of Plerixafor and Bortezomib As a Chemosensitization Strategy in Relapsed or Relapsed/Refractory Multiple Myeloma. Blood, 2011, 118, 1874-1874.	0.6	1
78	Carfilzomib Exerts Anti-Neoplastic Activity in Waldenstrom Macroglobulinemia Blood, 2009, 114, 4916-4916.	0.6	1
79	Role of TORC1 and TORC2 in Multiple Myeloma. Blood, 2011, 118, 1815-1815.	0.6	1
80	Synthesis and Characterisation of a Boron-Rich Symmetric Triazine Bearing a Hypoxia-Targeting Nitroimidazole Moiety. Symmetry, 2021, 13, 202.	1.1	0
81	Primary Waldesntrom Macroglobulinemia Cells Harbor Constitutive Activation of Akt, mTOR, Rictor and Raptor: Rational for Testing a Dual Inhibitor of the PI3K/Akt and mTOR Pathways in This Disease Blood, 2009, 114, 3843-3843.	0.6	0
82	Hypoxia Promotes Dissemination of Multiple Myeloma Through Acquisition of Endothelial to Mesenchymal Transition (EMT) Features. Blood, 2011, 118, 471-471.	0.6	0
83	The Role of PI3K Signaling in Cell Trafficking of Multiple Myeloma. Blood, 2011, 118, 1804-1804.	0.6	0
84	MicroRNA-155 As a Potential Plasma Biomarker for Chronic Lymphocytic Leukemia and Waldenstrom Macroglobulinemia,. Blood, 2011, 118, 3669-3669.	0.6	0
85	Dissecting the role of CXCR7 in Cell Trafficking of Endothelial-Cells and Endothelial-Progenitor-Cells in Multiple Myeloma,. Blood, 2011, 118, 3934-3934.	0.6	0
86	LNA Anti-MicroRNA-155: A Novel Therapeutic Strategy in Waldenstrom Macroglobulinemia and Chronic Lymphocytic Leukemia. Blood, 2011, 118, 2728-2728.	0.6	0
87	Deregulation of TNFRSF18 (GITR) Through Promoter CpG Island Methylation Induces Tumor Proliferation in Multiple Myeloma. Blood, 2011, 118, 2424-2424.	0.6	0
88	CXCR4 Monoclonal Antibody, BMS-936564 (MDX-1338), Modulates Epithelial to Mesenchymal Transition (EMT) in Multiple Myeloma Cells. Blood, 2012, 120, 4009-4009.	0.6	0
89	Class I PI3K Isoforms Exert a Differential Role On Survival and Cell Trafficking In Multiple Myeloma. Blood, 2013, 122, 3159-3159.	0.6	0
90	3D-Tissue Engineered Bone Marrow (3DTEBM) Culture Retrospectively Predicts Treatment Clinical Outcomes of Multiple Myeloma Patients. Blood, 2018, 132, 1987-1987.	0.6	0