José R GarcÃ-a-Cascales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5444187/publications.pdf

Version: 2024-02-01

		471509	395702
52	1,143	17	33
papers	citations	h-index	g-index
53	53	53	804
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Experimental characterization of the coupling and heating performance of a CO2 water-to-water heat pump and a water storage tank for domestic hot water production system. Energy and Buildings, 2022, 265, 112085.	6.7	14
2	Impact of an internal heat exchanger on a transcritical CO2 heat pump under optimal pressure conditions. Applied Thermal Engineering, 2022, 215, 118991.	6.0	10
3	Energy efficiency evaluation of the use of R513A as a drop-in replacement for R134a in a water chiller with a minichannel condenser for air-conditioning applications. Applied Thermal Engineering, 2021, 182, 115915.	6.0	14
4	Analysis of the optimal gas cooler pressure of a CO2 heat pump with gas bypass for hot water generation. Applied Thermal Engineering, 2021, 182, 116110.	6.0	27
5	Capabilities and limitations of Large Eddy Simulation with perfectly stirred reactor assumption for engineering applications of unsteady, hydrogen combustion sequences. Engineering Applications of Computational Fluid Mechanics, 2021, 15, 1452-1472.	3.1	0
6	Mathematical Modelling of Turbulent Combustion of Two-Phase Mixtures of Gas and Solid Particles with a Eulerian–Eulerian Approach: The Case of Hydrogen Combustion in the Presence of Graphite Particles. Mathematics, 2021, 9, 2017.	2.2	2
7	Experimental and numerical study of a CO2 water-to-water heat pump for hot water generation. International Journal of Refrigeration, 2021, 132, 30-44.	3.4	12
8	Three-Dimensional Numerical Modeling of Internal Ballistics for Solid Propellant Combinations. Mathematics, 2021, 9, 2714.	2.2	5
9	Numerical study on the influence of internal heat exchanger in transcritical CO ₂ heat pumps under optimal pressure conditions. Journal of Physics: Conference Series, 2021, 2116, 012098.	0.4	0
10	Evaluation of different models for turbulent combustion of hydrogen-air mixtures. Large Eddy Simulation of a LOVA sequence with hydrogen deflagration in ITER Vacuum Vessel. Fusion Engineering and Design, 2020, 161, 111901.	1.9	4
11	Dynamic simulation model and empirical validation for estimating thermal energy demand in indoor swimming pools. Energy Efficiency, 2020, 13, 955-970.	2.8	13
12	Validation of a Multiâ€Dimensional Model for Unsteady Combustion of AP/HTPB Propellants. Propellants, Explosives, Pyrotechnics, 2019, 44, 1482-1493.	1.6	2
13	An Energetic Model for Detonation of Granulated Solid Propellants. Energies, 2019, 12, 4459.	3.1	4
14	Use of a predictive control to improve the energy efficiency in indoor swimming pools using solar thermal energy. Solar Energy, 2019, 179, 380-390.	6.1	25
15	Experimental comparison of an air-to-water refrigeration system working with R134a and R1234yf. International Journal of Refrigeration, 2019, 97, 124-131.	3.4	15
16	GMDH ANN to optimise model development: Prediction of the pressure drop and the heat transfer coefficient during condensation within mini-channels. Applied Thermal Engineering, 2018, 144, 321-330.	6.0	16
17	On the accuracy of RANS, DES and LES turbulence models for predicting drag reduction with Base Bleed technology. Aerospace Science and Technology, 2017, 67, 126-140.	4.8	17
18	Experimental assessment of the replacement of a conventional fin-and-tube condenser by a minichannel heat exchanger in an air/water chiller for residential air conditioning. Energy and Buildings, 2017, 144, 104-116.	6.7	22

#	Article	IF	CITATIONS
19	Performance comparison of an air/water heat pump using a minichannel coil as evaporator in replacement of a fin-and-tube heat exchanger. International Journal of Refrigeration, 2017, 74, 560-575.	3.4	9
20	R32 and R410A condensation heat transfer coefficient and pressure drop within minichannel multiport tube. Experimental technique and measurements. Applied Thermal Engineering, 2016, 105, 118-131.	6.0	31
21	Modelling detonation of H2–O2–N2 mixtures in presence of solid particles in 3D scenarios. International Journal of Hydrogen Energy, 2016, 41, 17154-17168.	7.1	7
22	Condensing two-phase pressure drop and heat transfer coefficient of propane in a horizontal multiport mini-channel tube: Experimental measurements. International Journal of Refrigeration, 2016, 68, 59-75.	3.4	28
23	An approach formulated in terms of conserved variables for the characterisation of propellant combustion in internal ballistics. International Journal for Numerical Methods in Fluids, 2015, 79, 394-415.	1.6	11
24	NON-UNIFORM CONDENSATION OF REFRIGERANT R134A IN MINI-CHANNEL MULTIPORT TUBES: TWO-PHASE PRESSURE DROP AND HEAT TRANSFER COEFFICIENT. Journal of Enhanced Heat Transfer, 2015, 22, 391-416.	1.1	7
25	Experimental study of BIPV(Building integrated photovoltaics) modules running as solar passive air heaters for the regeneration of a desiccant wheel. , 2015, , .		0
26	A discussion about the methodology for validating a model of a finned-tube condenser considering different correlations for the heat transfer coefficients and pressure drop. Science and Technology for the Built Environment, 2015, 21, 585-594.	1.7	0
27	Two phase flow pressure drop in multiport mini-channel tubes using R134a and R32 as working fluids. International Journal of Thermal Sciences, 2015, 92, 17-33.	4.9	25
28	Experimental two-phase heat transfer coefficient and frictional pressure drop inside mini-channels during condensation with R1234yf and R134a. International Journal of Refrigeration, 2015, 51, 12-23.	3.4	67
29	Heat transfer coefficient during condensation inside a minichannel multiport tube with R32 and R410A as working fluids. Science and Technology for the Built Environment, 2015, 21, 535-544.	1.7	12
30	Characterisation of metal combustion with DUST code. Fusion Engineering and Design, 2015, 98-99, 2142-2146.	1.9	4
31	Experimental condensing two-phase frictional pressure drop inside mini-channels. Comparisons and new model development. International Journal of Heat and Mass Transfer, 2014, 75, 581-591.	4.8	36
32	Experimental study of cooling BIPV modules by forced convection in the air channel. Applied Energy, 2014, 135, 88-97.	10.1	93
33	Advances in the characterisation of reactive gas and solid mixtures under low pressure conditions. Computers and Fluids, 2014, 101, 64-87.	2.5	9
34	R1234YF Heat Transfer Coefficient During Condensation in a Mini-Channel Multiport Tube. , 2014, , .		3
35	Improving the Electrical Parameters of a Photovoltaic Panel by Means of an Induced or Forced Air Stream. International Journal of Photoenergy, 2013, 2013, 1-10.	2.5	93
36	Some advances in the characterization of gas and solid mixtures under low pressure conditions. AIP Conference Proceedings, 2012, , .	0.4	2

JOSé R GARCÃA-CASCALES

#	Article	IF	CITATIONS
37	Modelling an absorption system assisted by solar energy. Applied Thermal Engineering, 2011, 31, 112-118.	6.0	19
38	Compact heat exchangers modeling: Condensation. International Journal of Refrigeration, 2010, 33, 135-147.	3.4	38
39	A simplified model for shell-and-tubes heat exchangers: Practical application. Applied Thermal Engineering, 2010, 30, 1231-1241.	6.0	30
40	Development of a IRSN code for dust mobilisation problems in ITER. Fusion Engineering and Design, 2010, 85, 2274-2281.	1.9	8
41	Development of an Installation to Reduce the Temperature Photovoltaic Modules and Improve Efficiency. Renewable Energy and Power Quality Journal, 2010, 1, 893-898.	0.2	2
42	Extension of some numerical schemes to the analysis of gas and particle mixtures. International Journal for Numerical Methods in Fluids, 2008, 56, 845-875.	1.6	10
43	Advances in the Characterization of Transient Two-Phase Flow. AIAA Journal, 2007, 45, 2579-2584.	2.6	6
44	Assessment of boiling and condensation heat transfer correlations in the modelling of plate heat exchangers. International Journal of Refrigeration, 2007, 30, 1029-1041.	3.4	159
45	Assessment of condensation heat transfer correlations in the modelling of fin and tube heat exchangers. International Journal of Refrigeration, 2007, 30, 1018-1028.	3.4	17
46	Assessment of boiling heat transfer correlations in the modelling of fin and tube heat exchangers. International Journal of Refrigeration, 2007, 30, 1004-1017.	3.4	15
47	Application of AUSM schemes to multi-dimensional compressible two-phase flow problems. Nuclear Engineering and Design, 2006, 236, 1225-1239.	1.7	14
48	Extension of a high-resolution scheme to 1D liquid–gas flow. International Journal for Numerical Methods in Fluids, 2006, 50, 1063-1084.	1.6	2
49	Advanced three-dimensional two-phase flow simulation tools for application to reactor safety (ASTAR). Nuclear Engineering and Design, 2005, 235, 379-400.	1.7	45
50	On the extension of the AUSM+ scheme to compressible two-fluid models. Computers and Fluids, 2003, 32, 891-916.	2.5	132
51	Analysis of Several Numerical Schemes for the Characterization of Solid Propellant Combustion. , 0, ,		0
52	Probase: a Software Application to Estimate Drag in Base Bleed Technology Units using Large Eddy Simulation. , 0, , .		0