List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/544402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	To isolate or not to isolate: the impact of changing behavior on COVID-19 transmission. BMC Public Health, 2022, 22, 138.	1.2	22
2	Exploring the Effects of Prescribed Fire on Tick Spread and Propagation in a Spatial Setting. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-14.	0.7	3
3	Viability of Pentadesma in reduced habitat ecosystems within two climatic regions with fruit harvesting. Journal of Biological Dynamics, 2022, 16, 207-235.	0.8	0
4	Baptism of Fire: Modeling the Effects of Prescribed Fire on Lyme Disease. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022, 2022, 1-15.	0.7	4
5	Impact of Public Health Education Program on the Novel Coronavirus Outbreak in the United States. Frontiers in Public Health, 2021, 9, 630974.	1.3	23
6	Modeling the persistence of plant populations in fragmented ecosystems. Ecological Modelling, 2021, 457, 109681.	1.2	1
7	How Do Interventions Impact Malaria Dynamics Between Neighboring Countries? A Case Study with Botswana and Zimbabwe. Association for Women in Mathematics Series, 2021, , 83-109.	0.1	4
8	Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control. PLoS Computational Biology, 2020, 16, e1008136.	1.5	3
9	Optimal Control and Temperature Variations of Malaria Transmission Dynamics. Complexity, 2020, 2020, 1-32.	0.9	5
10	Connections and Feedback: Aquatic, Plant, and Soil Microbiomes in Heterogeneous and Changing Environments. BioScience, 2020, 70, 548-562.	2.2	11
11	Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control. , 2020, 16, e1008136.		0
12	Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control. , 2020, 16, e1008136.		0
13	Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control. , 2020, 16, e1008136.		0
14	Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control. , 2020, 16, e1008136.		0
15	Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control. , 2020, 16, e1008136.		0
16	Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control. , 2020, 16, e1008136.		0
17	Impact of Mobility on Methicillin-Resistant Staphylococcus aureus among Injection Drug Users. Antibiotics, 2019, 8, 81.	1.5	3
18	Optimal control and cost-effective analysis of the 2017 meningitis outbreak in Nigeria. Infectious Disease Modelling, 2019, 4, 161-187.	1.2	29

#	Article	IF	CITATIONS
19	The transmission dynamics of a within-and between-hosts malaria model. Ecological Complexity, 2019, 38, 31-55.	1.4	15
20	Virtual autopsy and community engagement for outbreak response in Africa: traditional, religious and sociocultural perspectives. Egyptian Journal of Forensic Sciences, 2018, 8, .	0.4	4
21	Maximizing tree harvesting benefit from forests under insect infestation disturbances. PLoS ONE, 2018, 13, e0200575.	1.1	2
22	Mathematical assessment of the role of vector insecticide resistance and feeding/resting behavior on malaria transmission dynamics: Optimal control analysis. Infectious Disease Modelling, 2018, 3, 301-321.	1.2	11
23	Optimal control strategies for dengue transmission in pakistan. Mathematical Biosciences, 2018, 305, 102-121.	0.9	102
24	Transmission Dynamics of Bovine Anaplasmosis in a Cattle Herd. Interdisciplinary Perspectives on Infectious Diseases, 2018, 2018, 1-16.	0.6	14
25	Transmission dynamics for Methicilin-resistant Staphalococous areus with injection drug user. BMC Infectious Diseases, 2018, 18, 69.	1.3	3
26	Mathematical model for Zika virus dynamics with sexual transmission route. Ecological Complexity, 2017, 29, 61-81.	1.4	69
27	Mathematical model of Zika virus with vertical transmission. Infectious Disease Modelling, 2017, 2, 244-267.	1.2	50
28	Mathematical model of Ebola transmission dynamics with relapse and reinfection. Mathematical Biosciences, 2017, 283, 48-59.	0.9	38
29	Optimal control and cost-effective analysis of malaria/visceral leishmaniasis co-infection. PLoS ONE, 2017, 12, e0171102.	1.1	54
30	Defining the Risk of Zika and Chikungunya Virus Transmission in Human Population Centers of the Eastern United States. PLoS Neglected Tropical Diseases, 2017, 11, e0005255.	1.3	54
31	Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 687-715.	0.5	4
32	Responses of two nonlinear microbial models to warming and increased carbon input. Biogeosciences, 2016, 13, 887-902.	1.3	43
33	Epidemiology of La Crosse Virus Emergence, Appalachia Region, United States. Emerging Infectious Diseases, 2016, 22, 1921-1929.	2.0	29
34	Mathematical Model of Three Age-Structured Transmission Dynamics of Chikungunya Virus. Computational and Mathematical Methods in Medicine, 2016, 2016, 1-31.	0.7	26
35	Transit times and mean ages for nonautonomous and autonomous compartmental systems. Journal of Mathematical Biology, 2016, 73, 1379-1398.	0.8	40
36	Optimal control of methicillin-resistant Staphylococcus aureus transmission in hospital settings. Applied Mathematical Modelling, 2016, 40, 4822-4843.	2.2	2

#	Article	IF	CITATIONS
37	Optimal harvesting strategies for timber and non-timber forest products in tropical ecosystems. Theoretical Ecology, 2016, 9, 287-297.	0.4	22
38	Mathematical assessment of the effect of traditional beliefs and customs on the transmission dynamics of the 2014 Ebola outbreaks. BMC Medicine, 2015, 13, 96.	2.3	56
39	QUALITATIVE ASSESSMENT OF THE ROLE OF TEMPERATURE VARIATIONS ON MALARIA TRANSMISSION DYNAMICS. Journal of Biological Systems, 2015, 23, 1550030.	0.5	43
40	Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130551.	1.8	215
41	Optimal control and stability analysis of an epidemic model with education campaign and treatment. , 2015, , .		0
42	Oscillatory behavior of two nonlinear microbial models of soil carbon decomposition. Biogeosciences, 2014, 11, 1817-1831.	1.3	53
43	Impact of mating behaviour on the success of malaria control through a single inundative release of transgenic mosquitoes. Journal of Theoretical Biology, 2014, 347, 33-43.	0.8	13
44	Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model. BioSystems, 2014, 119, 20-44.	0.9	57
45	Malaria Drug Resistance: The Impact of Human Movement and Spatial Heterogeneity. Bulletin of Mathematical Biology, 2014, 76, 1607-1641.	0.9	17
46	Qualitative dynamics of lowly- and highly-pathogenic avian influenza strains. Mathematical Biosciences, 2013, 243, 147-162.	0.9	17
47	Optimal isolation control strategies and cost-effectiveness analysis of a two-strain avian influenza model. BioSystems, 2013, 113, 155-164.	0.9	80
48	The impact of bed-net use on malaria prevalence. Journal of Theoretical Biology, 2013, 320, 58-65.	0.8	92
49	OPTIMAL CONTROL OF THE SPREAD OF MALARIA SUPERINFECTIVITY. Journal of Biological Systems, 2013, 21, 1340002.	0.5	26
50	Control Strategies for the Spread of Malaria in Humans With Variable Attractiveness. Mathematical Population Studies, 2013, 20, 82-100.	0.8	9
51	MODELING FOR COST ANALYSIS OF JOHNE'S DISEASE CONTROL BASED ON EVELISA TESTING. Journal of Biological Systems, 2013, 21, 1340010.	0.5	13
52	Mosquito management in the face of natural selection. Mathematical Biosciences, 2012, 239, 154-168.	0.9	4
53	A mathematical model for within-host Toxoplasma gondii invasion dynamics. Mathematical Biosciences and Engineering, 2012, 9, 647-662.	1.0	11
54	Optimal Control and Sensitivity Analysis of an Influenza Model with Treatment and Vaccination. Acta Biotheoretica, 2011, 59, 1-28.	0.7	89

#	Article	IF	CITATIONS
55	Mathematical analysis of a model for the transmission dynamics of bovine tuberculosis. Mathematical Methods in the Applied Sciences, 2011, 34, 1873-1887.	1.2	16
56	Global dynamics of a PDE model for Aedes aegypti mosquitoe incorporating female sexual preference. Dynamics of Partial Differential Equations, 2011, 8, 311-343.	1.0	2
57	AVIAN INFLUENZA OPTIMAL SEASONAL VACCINATIONÂSTRATEGY. ANZIAM Journal, 2010, 51, 394-405.	0.3	3
58	Theoretical assessment of avian influenza vaccine. Discrete and Continuous Dynamical Systems - Series B, 2010, 13, 1-25.	0.5	13
59	Numerical Treatment of the Mathematical Models for Water Pollution. Journal of Mathematics and Statistics, 2007, 3, 172-180.	0.2	3
60	Optimization in â"nby Coggin's method. International Journal of Computer Mathematics, 2004, 81, 1145-1152.	1.0	5
61	Stability analysis of rabies model with vaccination effect and culling in dogs. Applied Mathematical Sciences, 0, 9, 3805-3817.	0.0	9
62	Avian Influenza optimal seasonal vaccination strategy. ANZIAM Journal, 0, 51, 394.	0.0	0