Carrick Detweiler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5443929/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autonomous, Long-Range, Sensor Emplacement Using Unmanned Aircraft Systems. , 2022, 2, 437-467.		Ο
2	Online Soil Classification Using a UAS Sensor Emplacement System. Springer Proceedings in Advanced Robotics, 2021, , 174-184.	1.3	1
3	University of Nebraska unmanned aerial system (UAS) profiling during the LAPSE-RATE field campaign. Earth System Science Data, 2021, 13, 2457-2470.	9.9	5
4	Freyja: A Full Multirotor System for Agile & Precise Outdoor Flights. , 2021, , .		3
5	Trajectory Selection for Power-over-Tether Atmospheric Sensing UAS. , 2021, , .		4
6	Towards In-Flight Transfer of Payloads Between Multirotors. IEEE Robotics and Automation Letters, 2020, 5, 6201-6208.	5.1	2
7	In-Air Exchange of Small Payloads Between Multirotor Aerial Systems. Springer Proceedings in Advanced Robotics, 2020, , 511-523.	1.3	2
8	Design and Evaluation of Sensor Housing for Boundary Layer Profiling Using Multirotors. Sensors, 2019, 19, 2481.	3.8	18
9	How people make sense of drones used for atmospheric science (and other purposes): hopes, concerns, and recommendations. Journal of Unmanned Vehicle Systems, 2019, 7, 219-234.	1.2	11
10	Co-Regulated Consensus of Cyber-Physical Resources in Multi-Agent Unmanned Aircraft Systems. Electronics (Switzerland), 2019, 8, 569.	3.1	5
11	Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign. Sensors, 2019, 19, 2179.	3.8	88
12	Automatic live fingerlings counting using computer vision. Computers and Electronics in Agriculture, 2019, 167, 105015.	7.7	35
13	Extending Endurance of Multicopters: The Current State-of-the-Art. , 2019, , .		4
14	A Drone by Any Other Name: Purposes, End-User Trustworthiness, and Framing, but Not Terminology, Affect Public Support for Drones. IEEE Technology and Society Magazine, 2018, 37, 80-91.	0.8	24
15	Sensing Water Properties at Precise Depths from the Air. Springer Proceedings in Advanced Robotics, 2018, , 205-220.	1.3	4
16	Fire-Aware Planning of Aerial Trajectories and Ignitions. , 2018, , .		12
17	Unmanned Aerial Auger for Underground Sensor Installation. , 2018, , .		10

18 Co-Regulating Communication for Asynchronous Information Consensus. , 2018, , .

3

#	Article	IF	CITATIONS
19	Towards Aerial Recovery of Parachute-Deployed Payloads. , 2018, , .		7
20	UAV Based Wireless Charging of Sensor Networks Without Prior Knowledge. , 2018, , .		8
21	Investigation of Communicative Flight Paths for Small Unmanned Aerial Systems. , 2018, , .		7
22	Sensing water properties at precise depths from the air. Journal of Field Robotics, 2018, 35, 1205-1221.	6.0	9
23	UAV Localization in Row Crops. Journal of Field Robotics, 2017, 34, 1275-1296.	6.0	6
24	Using unmanned aerial vehicles to sample aquatic ecosystems. Limnology and Oceanography: Methods, 2017, 15, 1021-1030.	2.0	23
25	Inferring and monitoring invariants in robotic systems. Autonomous Robots, 2017, 41, 1027-1046.	4.8	15
26	UAS-Rx interface for mission planning, fire tracking, fire ignition, and real-time updating. , 2017, , .		10
27	Dimensional inconsistencies in code and ROS messages: A study of 5.9M lines of code. , 2017, , .		9
28	Extending Wireless Rechargeable Sensor Network Life without Full Knowledge. Sensors, 2017, 17, 1642.	3.8	18
29	The waterbug sub-surface sampler: Design, control and analysis. , 2016, , .		4
30	Smokey comes of age: unmanned aerial systems for fire management. Frontiers in Ecology and the Environment, 2016, 14, 333-339.	4.0	42
31	Environmental Reviews and Case Studies: Bringing Unmanned Aerial Systems Closer to the Environment. Environmental Practice, 2015, 17, 188-200.	0.3	15
32	Autonomous Aerial Water Sampling. Journal of Field Robotics, 2015, 32, 1095-1113.	6.0	103
33	Surface classification for sensor deployment from UAV landings. , 2015, , .		8
34	Obtaining the Thermal Structure of Lakes from the Air. Water (Switzerland), 2015, 7, 6467-6482.	2.7	21
35	On air-to-water radio communication between UAVs and water sensor networks. , 2015, , .		13
36	UAV Recharging Opportunities and Policies for Sensor Networks. International Journal of Distributed Sensor Networks, 2015, 11, 824260.	2.2	17

CARRICK DETWEILER

#	Article	IF	CITATIONS
37	Adaptive Decentralized Control of Mobile Underwater Sensor Networks and Robots for Modeling Underwater Phenomena. Journal of Sensor and Actuator Networks, 2014, 3, 113-149.	3.9	5
38	On crop height estimation with UAVs. , 2014, , .		89
39	Charge selection algorithms for maximizing sensor network life with UAV-based limited wireless recharging. , 2013, , .		32
40	Reducing failure rates of robotic systems though inferred invariants monitoring. , 2013, , .		8
41	Omni-directional hovercraft design as a foundation for MAV education. , 2012, , .		6
42	Resonant wireless power transfer to ground sensors from a UAV. , 2012, , .		84
43	Characterising the spatial and temporal activities of free-ranging cows from GPS data. Rangeland Journal, 2012, 34, 149.	0.9	32
44	Color-accurate underwater imaging using perceptual adaptive illumination. Autonomous Robots, 2011, 31, 285-296.	4.8	22
45	AMOUR V: A Hovering Energy Efficient Underwater Robot Capable of Dynamic Payloads. International Journal of Robotics Research, 2010, 29, 547-570.	8.5	60
46	Self-assembling mobile linkages. IEEE Robotics and Automation Magazine, 2007, 14, 45-55.	2.0	30
47	Matching scale-space features in 1D panoramas. Computer Vision and Image Understanding, 2006, 103, 184-195.	4.7	13