Natividad Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5443836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Bacterial Cell Wall: From Lipid II Flipping to Polymerization. Chemical Reviews, 2022, 122, 8884-8910.	23.0	32
2	The transmembrane αâ€helix of <scp>LptC</scp> participates in <scp>LPS</scp> extraction by the <scp>LptB₂FGC</scp> transporter. Molecular Microbiology, 2022, 118, 61-76.	1.2	7
3	Assembly and Maintenance of Lipids at the Bacterial Outer Membrane. Chemical Reviews, 2021, 121, 5098-5123.	23.0	72
4	Lipopolysaccharide Transport Involves Long-Range Coupling between Cytoplasmic and Periplasmic Domains of the LptB ₂ FGC Extractor. Journal of Bacteriology, 2021, 203, .	1.0	2
5	Transport of lipopolysaccharides and phospholipids to the outer membrane. Current Opinion in Microbiology, 2021, 60, 51-57.	2.3	14
6	YhdP, TamB, and YdbH Are Redundant but Essential for Growth and Lipid Homeostasis of the Gram-Negative Outer Membrane. MBio, 2021, 12, e0271421.	1.8	37
7	Detection of Transport Intermediates in the Peptidoglycan Flippase MurJ Identifies Residues Essential for Conformational Cycling. Journal of the American Chemical Society, 2020, 142, 5482-5486.	6.6	19
8	LptBâ€LptF coupling mediates the closure of the substrateâ€binding cavity in the LptB ₂ FGC transporter through a rigidâ€body mechanism to extract LPS. Molecular Microbiology, 2020, 114, 200-213.	1.2	12
9	Combining Mutations That Inhibit Two Distinct Steps of the ATP Hydrolysis Cycle Restores Wild-Type Function in the Lipopolysaccharide Transporter and Shows that ATP Binding Triggers Transport. MBio, 2019, 10, .	1.8	17
10	Structural basis of unidirectional export of lipopolysaccharide to the cell surface. Nature, 2019, 567, 550-553.	13.7	108
11	The bacterial lipid II flippase MurJ functions by an alternating-access mechanism. Journal of Biological Chemistry, 2019, 294, 981-990.	1.6	30
12	Probing Conformational States of a Target Protein in Escherichia coli Cells by in vivo Cysteine Cross-linking Coupled with Proteolytic Gel Analysis. Bio-protocol, 2019, 9, e3271.	0.2	2
13	Membrane Potential Is Required for MurJ Function. Journal of the American Chemical Society, 2018, 140, 4481-4484.	6.6	35
14	Function and Biogenesis of Lipopolysaccharides. EcoSal Plus, 2018, 8, .	2.1	375
15	A cluster of residues in the lipopolysaccharide exporter that selects substrate variants for transport to the outer membrane. Molecular Microbiology, 2018, 109, 541-554.	1.2	23
16	Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams. Nature Chemical Biology, 2017, 13, 793-798.	3.9	99
17	A viral protein antibiotic inhibits lipid II flippase activity. Nature Microbiology, 2017, 2, 1480-1484.	5.9	33
18	The Antibiotic Novobiocin Binds and Activates the ATPase That Powers Lipopolysaccharide Transport. Journal of the American Chemical Society, 2017, 139, 17221-17224.	6.6	65

NATIVIDAD RUIZ

#	Article	IF	CITATIONS
19	Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nature Reviews Microbiology, 2016, 14, 337-345.	13.6	299
20	Filling holes in peptidoglycan biogenesis of Escherichia coli. Current Opinion in Microbiology, 2016, 34, 1-6.	2.3	24
21	Characterization of a stalled complex on the β-barrel assembly machine. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8717-8722.	3.3	77
22	Identification of Residues in the Lipopolysaccharide ABC Transporter That Coordinate ATPase Activity with Extractor Function. MBio, 2016, 7, .	1.8	32
23	The O-Antigen Flippase Wzk Can Substitute for MurJ in Peptidoglycan Synthesis in Helicobacter pylori and Escherichia coli. PLoS ONE, 2016, 11, e0161587.	1.1	24
24	Lipid Flippases for Bacterial Peptidoglycan Biosynthesis. Lipid Insights, 2015, 8s1, LPI.S31783.	1.0	76
25	Development of a plasmid addicted system that is independent of co-inducers, antibiotics and specific carbon source additions for bioproduct (1-butanol) synthesis in Escherichia coli. Metabolic Engineering Communications, 2015, 2, 6-12.	1.9	2
26	Lipopolysaccharide transport to the cell surface: periplasmic transport and assembly into the outer membrane. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150027.	1.8	58
27	Lipopolysaccharide transport to the cell surface: biosynthesis and extraction from the inner membrane. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150029.	1.8	59
28	LptE binds to and alters the physical state of LPS to catalyze its assembly at the cell surface. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9467-9472.	3.3	74
29	Charge Requirements of Lipid II Flippase Activity in Escherichia coli. Journal of Bacteriology, 2014, 196, 4111-4119.	1.0	29
30	Decoupling catalytic activity from biological function of the ATPase that powers lipopolysaccharide transport. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4982-4987.	3.3	70
31	MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science, 2014, 345, 220-222.	6.0	278
32	Insights into the Function of YciM, a Heat Shock Membrane Protein Required To Maintain Envelope Integrity in Escherichia coli. Journal of Bacteriology, 2014, 196, 300-309.	1.0	35
33	A Bird's Eye View of the Bacterial Landscape. Methods in Molecular Biology, 2013, 966, 1-14.	0.4	0
34	Structure-Function Analysis of MurJ Reveals a Solvent-Exposed Cavity Containing Residues Essential for Peptidoglycan Biogenesis in Escherichia coli. Journal of Bacteriology, 2013, 195, 4639-4649.	1.0	63
35	Regulated Assembly of the Transenvelope Protein Complex Required for Lipopolysaccharide Export. Biochemistry, 2012, 51, 4800-4806.	1.2	118
36	Regulation of cell size in response to nutrient availability by fatty acid biosynthesis in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2561-8.	3.3	145

NATIVIDAD RUIZ

#	Article	IF	CITATIONS
37	Lipoprotein LptE is required for the assembly of LptD by the β-barrel assembly machine in the outer membrane of <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2492-2497.	3.3	116
38	Lumen Thiol Oxidoreductase1, a Disulfide Bond-Forming Catalyst, Is Required for the Assembly of Photosystem II in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 4462-4475.	3.1	87
39	Nonconsecutive disulfide bond formation in an essential integral outer membrane protein. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12245-12250.	3.3	96
40	Characterization of the two-protein complex in <i>Escherichia coli</i> responsible for lipopolysaccharide assembly at the outer membrane. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5363-5368.	3.3	184
41	<i>Streptococcus pyogenes</i> YtgP (Spy_0390) Complements <i>Escherichia coli</i> Strains Depleted of the Putative Peptidoglycan Flippase MurJ. Antimicrobial Agents and Chemotherapy, 2009, 53, 3604-3605.	1.4	23
42	Characterization of the role of the <i>Escherichia coli</i> periplasmic chaperone SurA using differential proteomics. Proteomics, 2009, 9, 2432-2443.	1.3	128
43	Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nature Reviews Microbiology, 2009, 7, 677-683.	13.6	232
44	Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15553-15557.	3.3	194
45	Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5537-5542.	3.3	225
46	A Suppressor of Cell Death Caused by the Loss of σ E Downregulates Extracytoplasmic Stress Responses and Outer Membrane Vesicle Production in Escherichia coli. Journal of Bacteriology, 2007, 189, 1523-1530.	1.0	68
47	Identifying outer membrane biogenesis factors in Escherichia coli. FASEB Journal, 2007, 21, A40.	0.2	0
48	Probing the Barrier Function of the Outer Membrane with Chemical Conditionality. ACS Chemical Biology, 2006, 1, 385-395.	1.6	72
49	Advances in understanding bacterial outer-membrane biogenesis. Nature Reviews Microbiology, 2006, 4, 57-66.	13.6	405
50	Sensing external stress: watchdogs of the Escherichia coli cell envelope. Current Opinion in Microbiology, 2005, 8, 122-126.	2.3	281
51	Chemical Conditionality. Cell, 2005, 121, 307-317.	13.5	287
52	Identification of a Multicomponent Complex Required for Outer Membrane Biogenesis in Escherichia coli. Cell, 2005, 121, 235-245.	13.5	656
53	RpoS Proteolysis Is Regulated by a Mechanism That Does Not Require the SprE (RssB) Response Regulator Phosphorylation Site. Journal of Bacteriology, 2004, 186, 7403-7410.	1.0	56
54	Constitutive Activation of the Escherichia coli Pho Regulon Upregulates rpoS Translation in an Hfq-Dependent Fashion. Journal of Bacteriology, 2003, 185, 5984-5992.	1.0	60

NATIVIDAD RUIZ

#	Article	IF	CITATIONS
55	Cytolysin-Mediated Translocation (CMT). Cell, 2001, 104, 143-152.	13.5	300
56	Genetic Basis for Activity Differences Between Vancomycin and Glycolipid Derivatives of Vancomycin. Science, 2001, 294, 361-364.	6.0	127
57	RpoS-Dependent Transcriptional Control of sprE : Regulatory Feedback Loop. Journal of Bacteriology, 2001, 183, 5974-5981.	1.0	40
58	Streptolysin O and adherence synergistically modulate proinflammatory responses of keratinocytes to group A streptococci. Molecular Microbiology, 1998, 27, 337-346.	1.2	111