Chuan-Liang Feng

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/544360/chuan-liang-feng-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

79	1,977	25	43
papers	citations	h-index	g-index
85 ext. papers	2,526 ext. citations	8.5 avg, IF	5.65 L-index

#	Paper	IF	Citations
79	Chiral graphene-based supramolecular hydrogels toward tumor therapy. <i>Polymer Chemistry</i> , 2022 , 13, 1685-1694	4.9	O
78	Use of Electrospun Phenylalanine/Poly-ECaprolactone Chiral Hybrid Scaffolds to Promote Endothelial Remodeling <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 773635	5.8	0
77	Chirality Bias Tissue Homeostasis by Manipulating Immunological Response. <i>Advanced Materials</i> , 2021 , e2105136	24	1
76	Bio-inspired chiral self-assemblies promoted neuronal differentiation of retinal progenitor cells through activation of metabolic pathway. <i>Bioactive Materials</i> , 2021 , 6, 990-997	16.7	8
75	Effect of Stereochemistry on Chirality and Gelation Properties of Supramolecular Self-Assemblies. <i>Chemistry - A European Journal</i> , 2021 , 27, 3119-3129	4.8	3
74	Induction of Chirality in Supramolecular Coassemblies Built from Achiral Precursors. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 1155-1161	6.4	3
73	Effect of aromatic core on the supramolecular chirality of l-phenylalanine derived assemblies. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 610, 125709	5.1	
72	Biomimetic Glycopolypeptide Hydrogels with Tunable Adhesion and Microporous Structure for Fast Hemostasis and Highly Efficient Wound Healing. <i>Advanced Functional Materials</i> , 2021 , 31, 2105628	15.6	22
71	Rational Fabrication of Multiple Dimensional Assemblies from Tryptophan-Based Racemate. <i>Chemistry - A European Journal</i> , 2021 , 27, 14911-14920	4.8	
70	Ultrasmall Zwitterionic Polypeptide-Coordinated Nanohybrids for Highly Efficient Cancer Photothermal Ferrotherapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 44002-44012	9.5	2
69	Three-Dimensional Chiral Supramolecular Microenvironment Strategy for Enhanced Biocatalysis. <i>ACS Nano</i> , 2021 , 15, 14972-14984	16.7	, O
68	Chiral helical supramolecular hydrogels with adjustable pitch and diameter towards high-performance chiroptical detecting. <i>Giant</i> , 2021 , 8, 100077	5.6	2
67	Controlled chiral transcription and efficient separation via graphene oxide encapsulated helical supramolecular assembly. <i>Carbon</i> , 2020 , 165, 82-89	10.4	8
66	Supramolecular Hydrogels with Tunable Chirality for Promising Biomedical Applications. <i>Accounts of Chemical Research</i> , 2020 , 53, 852-862	24.3	71
65	Antimicrobial Activity with Enhanced Mechanical Properties in Phenylalanine-Based Chiral Coassembled Hydrogels: The Influence of Pyridine Hydrazide Derivatives <i>ACS Applied Bio Materials</i> , 2020 , 3, 2295-2304	4.1	4
64	Wrapping Chiral Nanoribbons into Coiled and Condensed Microstructures in Supramolecular Hydrogels. <i>Advanced Functional Materials</i> , 2020 , 30, 2002936	15.6	9
63	Chirality Transfer in Supramolecular Co-assembled Fibrous Material Enabling the Visual Recognition of Sucrose. <i>Advanced Fiber Materials</i> , 2020 , 2, 204-211	10.9	4

(2019-2020)

62	Visible Enantiomer Discrimination via Diphenylalanine-Based Chiral Supramolecular Self-Assembly on Multiple Platforms. <i>Langmuir</i> , 2020 , 36, 2524-2533	4	10
61	Highly efficient full-color and white circularly polarized luminescent nanoassemblies and their performance in light emitting devices. <i>Nanoscale</i> , 2020 , 12, 6233-6238	7.7	32
60	Deciphering the structure-property relationship in coumarin-based supramolecular organogel materials. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 597, 124744	5.1	5
59	Redox-Driven Helix Reversal of Graphene-Based Hydrogels. ACS Nano, 2020,	16.7	4
58	Solvent-Controlled Topological Evolution from Nanospheres to Superhelices. <i>Small</i> , 2020 , 16, e2004756	511	8
57	Trends in design of C2-symmetric supramolecular chiral gelators. <i>European Polymer Journal</i> , 2019 , 117, 236-253	5.2	7
56	Co-Assembled Supramolecular Nanostructure of Platinum(II) Complex through Helical Ribbon to Helical Tubes with Helical Inversion. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 11709-11714	16.4	25
55	Inversion of Circularly Polarized Luminescence of Nanofibrous Hydrogels through Co-assembly with Achiral Coumarin Derivatives. <i>ACS Nano</i> , 2019 , 13, 7281-7290	16.7	78
54	Molecular recognition of melamine and cyanuric acid by C2-symmetric phenylalanine based supramolecular hydrogels. <i>European Polymer Journal</i> , 2019 , 118, 170-175	5.2	1
53	Chirality Controls Mesenchymal Stem Cell Lineage Diversification through Mechanoresponses. <i>Advanced Materials</i> , 2019 , 31, e1900582	24	37
52	Photoresponsive Supramolecular Hydrogel Co-assembled from Fmoc-Phe-OH and 4,4?-Azopyridine for Controllable Dye Release. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2019 , 37, 437-443	3.5	2
51	Controlled mechanical properties and supramolecular chirality of hydrogels via pH change. <i>MethodsX</i> , 2019 , 6, 417-423	1.9	1
50	Mechanically Stable C2-Phenylalanine Hybrid Hydrogels for Manipulating Cell Adhesion. <i>ACS Applied Materials & Applied & Applied Materials & Applied & Appli</i>	9.5	8
49	Co-Assembled Supramolecular Nanostructure of Platinum(II) Complex through Helical Ribbon to Helical Tubes with Helical Inversion. <i>Angewandte Chemie</i> , 2019 , 131, 11835-11840	3.6	7
48	Achiral isomers controlled circularly polarized luminescence in supramolecular hydrogels. <i>Nanoscale</i> , 2019 , 11, 14210-14215	7.7	34
47	Effect of Chirality on Cell Spreading and Differentiation: From Chiral Molecules to Chiral Self-Assembly. <i>ACS Applied Materials & Self-Assembly</i> , 11, 38568-38577	9.5	25
46	[2 + 2] Photocycloaddition Reaction Regulated the Stability and Morphology of Hydrogels. <i>Advanced Fiber Materials</i> , 2019 , 1, 241-247	10.9	5
45	Supramolecular fluorescent hydrogelators as bio-imaging probes. <i>Materials Horizons</i> , 2019 , 6, 14-44	14.4	7 2

44	The Cooperative Effect of Both Molecular and Supramolecular Chirality on Cell Adhesion. <i>Angewandte Chemie</i> , 2018 , 130, 6585-6589	3.6	10
43	Metal-Ion-Mediated Supramolecular Chirality of l-Phenylalanine Based Hydrogels. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5655-5659	16.4	64
42	Metal-Ion-Mediated Supramolecular Chirality of l-Phenylalanine Based Hydrogels. <i>Angewandte Chemie</i> , 2018 , 130, 5757-5761	3.6	15
41	The Cooperative Effect of Both Molecular and Supramolecular Chirality on Cell Adhesion. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6475-6479	16.4	48
40	Photoresponsive Coumarin-Based Supramolecular Hydrogel for Controllable Dye Release. <i>Macromolecular Chemistry and Physics</i> , 2018 , 219, 1700398	2.6	13
39	Stoichiometry-Controlled Inversion of Supramolecular Chirality in Nanostructures Co-assembled with Bipyridines. <i>Chemistry - A European Journal</i> , 2018 , 24, 1509-1513	4.8	28
38	Modulating Supramolecular Chirality in Alanine Derived Assemblies by Multiple External Stimuli. <i>Langmuir</i> , 2018 , 34, 7869-7876	4	15
37	Enhanced cell adhesion on a bio-inspired hierarchically structured polyester modified with gelatin-methacrylate. <i>Biomaterials Science</i> , 2018 , 6, 785-792	7.4	18
36	Chirality-Enabled Liquid Crystalline Physical Gels with High Modulus but Low Driving Voltage. <i>ACS Applied Materials & Driving States</i> , 2018, 10, 43184-43191	9.5	8
35	Amino Acids and Peptide-Based Supramolecular Hydrogels for Three-Dimensional Cell Culture. <i>Advanced Materials</i> , 2017 , 29, 1604062	24	192
34	Coassembly Modulated pH-Responsive Hydrogel for Dye Absorption and Release. <i>Macromolecular Chemistry and Physics</i> , 2017 , 218, 1600560	2.6	12
33	Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays. <i>Langmuir</i> , 2017 , 33, 7799-780	94	11
32	Co-organizing synthesis of heterogeneous nanostructures through the photo-cleavage of pre-stabilized self-assemblies. <i>Chemical Communications</i> , 2017 , 53, 4702-4705	5.8	6
31	Unexpected right-handed helical nanostructures co-assembled from l-phenylalanine derivatives and achiral bipyridines. <i>Chemical Science</i> , 2017 , 8, 1769-1775	9.4	49
30	Non-invasively visualizing cell-matrix interactions in two-photon excited supramolecular hydrogels. Journal of Materials Chemistry B, 2017 , 5, 7790-7795	7.3	9
29	Autoinducer Sensing Microarrays by Reporter Bacteria Encapsulated in Hybrid Supramolecular-Polysaccharide Hydrogels. <i>Macromolecular Bioscience</i> , 2017 , 17, 1700176	5.5	9
28	Transfer and Dynamic Inversion of Coassembled Supramolecular Chirality through 2D-Sheet to Rolled-Up Tubular Structure. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17711-17714	16.4	43

(2013-2016)

26	Inversion of the Supramolecular Chirality of Nanofibrous Structures through Co-Assembly with Achiral Molecules. <i>Angewandte Chemie</i> , 2016 , 128, 2457-2461	3.6	31
25	Influence of C-HIIIO Hydrogen Bonds on Macroscopic Properties of Supramolecular Assembly. <i>ACS Applied Materials & District Applied & District Applie</i>	9.5	24
24	Tuning Syneresis Properties of Kappa-Carrageenan Hydrogel by C2-Symmetric Benzene-Based Supramolecular Gelators. <i>Macromolecular Chemistry and Physics</i> , 2016 , 217, 1197-1204	2.6	9
23	Inversion of the Supramolecular Chirality of Nanofibrous Structures through Co-Assembly with Achiral Molecules. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2411-5	16.4	99
22	Innentitelbild: Inversion of the Supramolecular Chirality of Nanofibrous Structures through Co-Assembly with Achiral Molecules (Angew. Chem. 7/2016). <i>Angewandte Chemie</i> , 2016 , 128, 2318-231	8 ^{3.6}	
21	Hybrid hydrogels assembled from phenylalanine derivatives and agarose with enhanced mechanical strength. <i>Chemical Research in Chinese Universities</i> , 2016 , 32, 872-876	2.2	8
20	Installing Logic Gates to Multiresponsive Supramolecular Hydrogel Co-assembled from Phenylalanine Amphiphile and Bis(pyridinyl) Derivative. <i>Langmuir</i> , 2015 , 31, 7122-8	4	30
19	Bioinspired Hierarchical Surface Structures with Tunable Wettability for Regulating Bacteria Adhesion. <i>ACS Nano</i> , 2015 , 9, 10664-72	16.7	158
18	Biotin-Avidin Based Universal Cell-Matrix Interaction for Promoting Three-Dimensional Cell Adhesion. <i>ACS Applied Materials & District Materials</i> 8. <i>2015</i> , 7, 20786-92	9.5	20
17	Time-Dependent Investigation of Surface Nanostructures of Weak-Phase-Separated Block Copolymer Films. <i>Langmuir</i> , 2015 , 31, 9026-32	4	1
16	Multiresponsive hydrogel coassembled from phenylalanine and azobenzene derivatives as 3D scaffolds for photoguiding cell adhesion and release. <i>ACS Applied Materials & Description</i> , 101-7	9.5	70
15	Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7789-93	16.4	161
14	Rational design of coumarin-based supramolecular hydrogelators for cell imaging. <i>Chemical Communications</i> , 2014 , 50, 15545-8	5.8	22
13	Convenient three-dimensional cell culture in supermolecular hydrogels. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 7948-52	9.5	25
12	C2-symmetric benzene-based organogels: A rationally designed LMOG and its application in marine oil spill. <i>Journal of Molecular Liquids</i> , 2014 , 190, 94-98	6	15
11	Control of Three-Dimensional Cell Adhesion by the Chirality of Nanofibers in Hydrogels. <i>Angewandte Chemie</i> , 2014 , 126, 7923-7927	3.6	21
10	Dual-specific interaction to detect DNA on gold nanoparticles. Sensors, 2013, 13, 5749-56	3.8	3
9	Mechanical reinforcement of C2-phenyl-derived hydrogels for controlled cell adhesion. <i>Soft Matter</i> , 2013 , 9, 3750	3.6	45

8	Highly directional co-assembly of 2,6-pyridinedicarboxylic acid and 4-hydroxypyridine based on low molecular weight gelators. <i>Journal of Molecular Liquids</i> , 2013 , 180, 129-134	6	6
7	RGD anchored C-benzene based PEG-like hydrogels as scaffolds for two and three dimensional cell cultures. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 3562-3568	7.3	25
6	Novel pH responsive hydrogels for controlled cell adhesion and triggered surface detachment. <i>Soft Matter</i> , 2012 , 8, 9539	3.6	33
5	C2-symmetric benzene-based hydrogels with unique layered structures for controllable organic dye adsorption. <i>Soft Matter</i> , 2012 , 8, 3231	3.6	57
4	A highly efficient self-assembly of responsive C(2) -cyclohexane-derived gelators. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 1535-41	4.8	20
3	Selective encapsulation of dye molecules in dendrimer/polymer multilayer microcapsules by DNA hybridization. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1438		11
2	DNA hybridization induced selective encapsulation of small dye molecules in dendrimer based microcapsules. <i>Analyst, The</i> , 2010 , 135, 2939-44	5	9
1	Hydrogen-bonding regulated supramolecular chirality with controllable biostability. <i>Nano Research</i> ,1	10	1