Chuan-Liang Feng

List of Publications by Citations

Source: https://exaly.com/author-pdf/544360/chuan-liang-feng-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

79
papers

1,977
citations

25
h-index

8-index

8-index

2,526
ext. papers

2,526
ext. citations

2,526
ext. citations

2,526
ext. citations

2,526
ext. citations

#	Paper	IF	Citations
79	Amino Acids and Peptide-Based Supramolecular Hydrogels for Three-Dimensional Cell Culture. <i>Advanced Materials</i> , 2017 , 29, 1604062	24	192
78	Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7789-93	16.4	161
77	Bioinspired Hierarchical Surface Structures with Tunable Wettability for Regulating Bacteria Adhesion. <i>ACS Nano</i> , 2015 , 9, 10664-72	16.7	158
76	Inversion of the Supramolecular Chirality of Nanofibrous Structures through Co-Assembly with Achiral Molecules. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2411-5	16.4	99
75	Inversion of Circularly Polarized Luminescence of Nanofibrous Hydrogels through Co-assembly with Achiral Coumarin Derivatives. <i>ACS Nano</i> , 2019 , 13, 7281-7290	16.7	78
74	Supramolecular fluorescent hydrogelators as bio-imaging probes. <i>Materials Horizons</i> , 2019 , 6, 14-44	14.4	72
73	Supramolecular Hydrogels with Tunable Chirality for Promising Biomedical Applications. <i>Accounts of Chemical Research</i> , 2020 , 53, 852-862	24.3	71
72	Multiresponsive hydrogel coassembled from phenylalanine and azobenzene derivatives as 3D scaffolds for photoguiding cell adhesion and release. <i>ACS Applied Materials & Description</i> , 2015, 7, 301-7	9.5	70
71	Metal-Ion-Mediated Supramolecular Chirality of l-Phenylalanine Based Hydrogels. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5655-5659	16.4	64
70	C2-symmetric benzene-based hydrogels with unique layered structures for controllable organic dye adsorption. <i>Soft Matter</i> , 2012 , 8, 3231	3.6	57
69	Unexpected right-handed helical nanostructures co-assembled from l-phenylalanine derivatives and achiral bipyridines. <i>Chemical Science</i> , 2017 , 8, 1769-1775	9.4	49
68	The Cooperative Effect of Both Molecular and Supramolecular Chirality on Cell Adhesion. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6475-6479	16.4	48
67	Mechanical reinforcement of C2-phenyl-derived hydrogels for controlled cell adhesion. <i>Soft Matter</i> , 2013 , 9, 3750	3.6	45
66	Transfer and Dynamic Inversion of Coassembled Supramolecular Chirality through 2D-Sheet to Rolled-Up Tubular Structure. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17711-17714	16.4	43
65	Chirality Controls Mesenchymal Stem Cell Lineage Diversification through Mechanoresponses. <i>Advanced Materials</i> , 2019 , 31, e1900582	24	37
64	Achiral isomers controlled circularly polarized luminescence in supramolecular hydrogels. <i>Nanoscale</i> , 2019 , 11, 14210-14215	7.7	34
63	Novel pH responsive hydrogels for controlled cell adhesion and triggered surface detachment. <i>Soft Matter</i> , 2012 , 8, 9539	3.6	33

(2018-2020)

62	Highly efficient full-color and white circularly polarized luminescent nanoassemblies and their performance in light emitting devices. <i>Nanoscale</i> , 2020 , 12, 6233-6238	7.7	32
61	Inversion of the Supramolecular Chirality of Nanofibrous Structures through Co-Assembly with Achiral Molecules. <i>Angewandte Chemie</i> , 2016 , 128, 2457-2461	3.6	31
60	Installing Logic Gates to Multiresponsive Supramolecular Hydrogel Co-assembled from Phenylalanine Amphiphile and Bis(pyridinyl) Derivative. <i>Langmuir</i> , 2015 , 31, 7122-8	4	30
59	Stoichiometry-Controlled Inversion of Supramolecular Chirality in Nanostructures Co-assembled with Bipyridines. <i>Chemistry - A European Journal</i> , 2018 , 24, 1509-1513	4.8	28
58	Co-Assembled Supramolecular Nanostructure of Platinum(II) Complex through Helical Ribbon to Helical Tubes with Helical Inversion. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 11709-11714	16.4	25
57	Effect of Chirality on Cell Spreading and Differentiation: From Chiral Molecules to Chiral Self-Assembly. <i>ACS Applied Materials & Differentiation</i> , 11, 38568-38577	9.5	25
56	Convenient three-dimensional cell culture in supermolecular hydrogels. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 7948-52	9.5	25
55	RGD anchored C-benzene based PEG-like hydrogels as scaffolds for two and three dimensional cell cultures. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 3562-3568	7.3	25
54	Influence of C-HIIIO Hydrogen Bonds on Macroscopic Properties of Supramolecular Assembly. <i>ACS Applied Materials & District Materials &</i>	9.5	24
53	Galactose-decorated light-responsive hydrogelator precursors for selectively killing cancer cells. <i>Chemical Communications</i> , 2016 , 52, 12574-12577	5.8	23
52	Rational design of coumarin-based supramolecular hydrogelators for cell imaging. <i>Chemical Communications</i> , 2014 , 50, 15545-8	5.8	22
51	Biomimetic Glycopolypeptide Hydrogels with Tunable Adhesion and Microporous Structure for Fast Hemostasis and Highly Efficient Wound Healing. <i>Advanced Functional Materials</i> , 2021 , 31, 2105628	15.6	22
50	Control of Three-Dimensional Cell Adhesion by the Chirality of Nanofibers in Hydrogels. <i>Angewandte Chemie</i> , 2014 , 126, 7923-7927	3.6	21
49	Biotin-Avidin Based Universal Cell-Matrix Interaction for Promoting Three-Dimensional Cell Adhesion. <i>ACS Applied Materials & English Sensor</i> , Interfaces, 2015 , 7, 20786-92	9.5	20
48	A highly efficient self-assembly of responsive C(2) -cyclohexane-derived gelators. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 1535-41	4.8	20
47	Enhanced cell adhesion on a bio-inspired hierarchically structured polyester modified with gelatin-methacrylate. <i>Biomaterials Science</i> , 2018 , 6, 785-792	7.4	18
46	Metal-Ion-Mediated Supramolecular Chirality of l-Phenylalanine Based Hydrogels. <i>Angewandte Chemie</i> , 2018 , 130, 5757-5761	3.6	15
45	Modulating Supramolecular Chirality in Alanine Derived Assemblies by Multiple External Stimuli. <i>Langmuir</i> , 2018 , 34, 7869-7876	4	15

44	C2-symmetric benzene-based organogels: A rationally designed LMOG and its application in marine oil spill. <i>Journal of Molecular Liquids</i> , 2014 , 190, 94-98	6	15
43	Photoresponsive Coumarin-Based Supramolecular Hydrogel for Controllable Dye Release. <i>Macromolecular Chemistry and Physics</i> , 2018 , 219, 1700398	2.6	13
42	Coassembly Modulated pH-Responsive Hydrogel for Dye Absorption and Release. <i>Macromolecular Chemistry and Physics</i> , 2017 , 218, 1600560	2.6	12
41	Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays. <i>Langmuir</i> , 2017 , 33, 7799-780	94	11
40	Selective encapsulation of dye molecules in dendrimer/polymer multilayer microcapsules by DNA hybridization. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1438		11
39	Visible Enantiomer Discrimination via Diphenylalanine-Based Chiral Supramolecular Self-Assembly on Multiple Platforms. <i>Langmuir</i> , 2020 , 36, 2524-2533	4	10
38	The Cooperative Effect of Both Molecular and Supramolecular Chirality on Cell Adhesion. <i>Angewandte Chemie</i> , 2018 , 130, 6585-6589	3.6	10
37	Wrapping Chiral Nanoribbons into Coiled and Condensed Microstructures in Supramolecular Hydrogels. <i>Advanced Functional Materials</i> , 2020 , 30, 2002936	15.6	9
36	Non-invasively visualizing cell-matrix interactions in two-photon excited supramolecular hydrogels. Journal of Materials Chemistry B, 2017 , 5, 7790-7795	7-3	9
35	Autoinducer Sensing Microarrays by Reporter Bacteria Encapsulated in Hybrid Supramolecular-Polysaccharide Hydrogels. <i>Macromolecular Bioscience</i> , 2017 , 17, 1700176	5.5	9
34	DNA hybridization induced selective encapsulation of small dye molecules in dendrimer based microcapsules. <i>Analyst, The</i> , 2010 , 135, 2939-44	5	9
33	Tuning Syneresis Properties of Kappa-Carrageenan Hydrogel by C2-Symmetric Benzene-Based Supramolecular Gelators. <i>Macromolecular Chemistry and Physics</i> , 2016 , 217, 1197-1204	2.6	9
32	Controlled chiral transcription and efficient separation via graphene oxide encapsulated helical supramolecular assembly. <i>Carbon</i> , 2020 , 165, 82-89	10.4	8
31	Mechanically Stable C2-Phenylalanine Hybrid Hydrogels for Manipulating Cell Adhesion. <i>ACS Applied Materials & Discrete Applied & Discrete & Discrete Applied & Discrete </i>	9.5	8
30	Solvent-Controlled Topological Evolution from Nanospheres to Superhelices. <i>Small</i> , 2020 , 16, e200475	611	8
29	Hybrid hydrogels assembled from phenylalanine derivatives and agarose with enhanced mechanical strength. <i>Chemical Research in Chinese Universities</i> , 2016 , 32, 872-876	2.2	8
28	Bio-inspired chiral self-assemblies promoted neuronal differentiation of retinal progenitor cells through activation of metabolic pathway. <i>Bioactive Materials</i> , 2021 , 6, 990-997	16.7	8
27	Chirality-Enabled Liquid Crystalline Physical Gels with High Modulus but Low Driving Voltage. <i>ACS Applied Materials & Driving Voltage</i> . 2018 , 10, 43184-43191	9.5	8

(2015-2019)

26	Trends in design of C2-symmetric supramolecular chiral gelators. <i>European Polymer Journal</i> , 2019 , 117, 236-253	5.2	7	
25	Co-Assembled Supramolecular Nanostructure of Platinum(II) Complex through Helical Ribbon to Helical Tubes with Helical Inversion. <i>Angewandte Chemie</i> , 2019 , 131, 11835-11840	3.6	7	
24	Co-organizing synthesis of heterogeneous nanostructures through the photo-cleavage of pre-stabilized self-assemblies. <i>Chemical Communications</i> , 2017 , 53, 4702-4705	5.8	6	
23	Highly directional co-assembly of 2,6-pyridinedicarboxylic acid and 4-hydroxypyridine based on low molecular weight gelators. <i>Journal of Molecular Liquids</i> , 2013 , 180, 129-134	6	6	
22	Deciphering the structure-property relationship in coumarin-based supramolecular organogel materials. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 597, 124744	5.1	5	
21	[2 + 2] Photocycloaddition Reaction Regulated the Stability and Morphology of Hydrogels. <i>Advanced Fiber Materials</i> , 2019 , 1, 241-247	10.9	5	
20	Antimicrobial Activity with Enhanced Mechanical Properties in Phenylalanine-Based Chiral Coassembled Hydrogels: The Influence of Pyridine Hydrazide Derivatives <i>ACS Applied Bio Materials</i> , 2020 , 3, 2295-2304	4.1	4	
19	Chirality Transfer in Supramolecular Co-assembled Fibrous Material Enabling the Visual Recognition of Sucrose. <i>Advanced Fiber Materials</i> , 2020 , 2, 204-211	10.9	4	
18	Redox-Driven Helix Reversal of Graphene-Based Hydrogels. ACS Nano, 2020,	16.7	4	
17	Dual-specific interaction to detect DNA on gold nanoparticles. <i>Sensors</i> , 2013 , 13, 5749-56	3.8	3	
16	Effect of Stereochemistry on Chirality and Gelation Properties of Supramolecular Self-Assemblies. <i>Chemistry - A European Journal</i> , 2021 , 27, 3119-3129	4.8	3	
15	Induction of Chirality in Supramolecular Coassemblies Built from Achiral Precursors. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 1155-1161	6.4	3	
14	Photoresponsive Supramolecular Hydrogel Co-assembled from Fmoc-Phe-OH and 4,4?-Azopyridine for Controllable Dye Release. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2019 , 37, 437-443	3.5	2	
13	Ultrasmall Zwitterionic Polypeptide-Coordinated Nanohybrids for Highly Efficient Cancer Photothermal Ferrotherapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 44002-44012	9.5	2	
12	Chiral helical supramolecular hydrogels with adjustable pitch and diameter towards high-performance chiroptical detecting. <i>Giant</i> , 2021 , 8, 100077	5.6	2	
11	Molecular recognition of melamine and cyanuric acid by C2-symmetric phenylalanine based supramolecular hydrogels. <i>European Polymer Journal</i> , 2019 , 118, 170-175	5.2	1	
10	Controlled mechanical properties and supramolecular chirality of hydrogels via pH change. <i>MethodsX</i> , 2019 , 6, 417-423	1.9	1	
9	Time-Dependent Investigation of Surface Nanostructures of Weak-Phase-Separated Block Copolymer Films. <i>Langmuir</i> , 2015 , 31, 9026-32	4	1	

8	Chirality Bias Tissue Homeostasis by Manipulating Immunological Response. <i>Advanced Materials</i> , 2021 , e2105136	24	1
7	Hydrogen-bonding regulated supramolecular chirality with controllable biostability. <i>Nano Research</i> ,1	10	1
6	Use of Electrospun Phenylalanine/Poly-ECaprolactone Chiral Hybrid Scaffolds to Promote Endothelial Remodeling <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 773635	5.8	О
5	Three-Dimensional Chiral Supramolecular Microenvironment Strategy for Enhanced Biocatalysis. <i>ACS Nano</i> , 2021 , 15, 14972-14984	16.7	O
4	Chiral graphene-based supramolecular hydrogels toward tumor therapy. <i>Polymer Chemistry</i> , 2022 , 13, 1685-1694	4.9	О
3	Innentitelbild: Inversion of the Supramolecular Chirality of Nanofibrous Structures through Co-Assembly with Achiral Molecules (Angew. Chem. 7/2016). <i>Angewandte Chemie</i> , 2016 , 128, 2318-2318	₃ 3.6	
2	Effect of aromatic core on the supramolecular chirality of l-phenylalanine derived assemblies. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 610, 125709	5.1	
1	Rational Fabrication of Multiple Dimensional Assemblies from Tryptophan-Based Racemate. Chemistry - A European Journal, 2021 , 27, 14911-14920	4.8	