Chuan-Liang Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/544360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amino Acids and Peptideâ€Based Supramolecular Hydrogels for Threeâ€Dimensional Cell Culture. Advanced Materials, 2017, 29, 1604062.	11.1	260
2	Bioinspired Hierarchical Surface Structures with Tunable Wettability for Regulating Bacteria Adhesion. ACS Nano, 2015, 9, 10664-10672.	7.3	219
3	Control of Threeâ€Dimensional Cell Adhesion by the Chirality of Nanofibers in Hydrogels. Angewandte Chemie - International Edition, 2014, 53, 7789-7793.	7.2	203
4	Supramolecular Hydrogels with Tunable Chirality for Promising Biomedical Applications. Accounts of Chemical Research, 2020, 53, 852-862.	7.6	166
5	Inversion of the Supramolecular Chirality of Nanofibrous Structures through Coâ€Assembly with Achiral Molecules. Angewandte Chemie - International Edition, 2016, 55, 2411-2415.	7.2	140
6	Inversion of Circularly Polarized Luminescence of Nanofibrous Hydrogels through Co-assembly with Achiral Coumarin Derivatives. ACS Nano, 2019, 13, 7281-7290.	7.3	126
7	Biomimetic Glycopolypeptide Hydrogels with Tunable Adhesion and Microporous Structure for Fast Hemostasis and Highly Efficient Wound Healing. Advanced Functional Materials, 2021, 31, 2105628.	7.8	123
8	Metalâ€Ionâ€Mediated Supramolecular Chirality of <scp>l</scp> â€Phenylalanine Based Hydrogels. Angewandte Chemie - International Edition, 2018, 57, 5655-5659.	7.2	110
9	Supramolecular fluorescent hydrogelators as bio-imaging probes. Materials Horizons, 2019, 6, 14-44.	6.4	103
10	The Cooperative Effect of Both Molecular and Supramolecular Chirality on Cell Adhesion. Angewandte Chemie - International Edition, 2018, 57, 6475-6479.	7.2	82
11	Multiresponsive Hydrogel Coassembled from Phenylalanine and Azobenzene Derivatives as 3D Scaffolds for Photoguiding Cell Adhesion and Release. ACS Applied Materials & Interfaces, 2015, 7, 301-307.	4.0	79
12	Chirality Controls Mesenchymal Stem Cell Lineage Diversification through Mechanoresponses. Advanced Materials, 2019, 31, e1900582.	11.1	73
13	Unexpected right-handed helical nanostructures co-assembled from <scp>l</scp> -phenylalanine derivatives and achiral bipyridines. Chemical Science, 2017, 8, 1769-1775.	3.7	65
14	C2-symmetric benzene-based hydrogels with unique layered structures for controllable organic dye adsorption. Soft Matter, 2012, 8, 3231.	1.2	64
15	Achiral isomers controlled circularly polarized luminescence in supramolecular hydrogels. Nanoscale, 2019, 11, 14210-14215.	2.8	63
16	Transfer and Dynamic Inversion of Coassembled Supramolecular Chirality through 2D-Sheet to Rolled-Up Tubular Structure. Journal of the American Chemical Society, 2017, 139, 17711-17714.	6.6	62
17	Effect of Chirality on Cell Spreading and Differentiation: From Chiral Molecules to Chiral Self-Assembly. ACS Applied Materials & Interfaces, 2019, 11, 38568-38577.	4.0	55
18	Mechanical reinforcement of C2-phenyl-derived hydrogels for controlled cell adhesion. Soft Matter, 2013, 9, 3750.	1.2	52

#	Article	IF	CITATIONS
19	Highly efficient full-color and white circularly polarized luminescent nanoassemblies and their performance in light emitting devices. Nanoscale, 2020, 12, 6233-6238.	2.8	50
20	Stoichiometry ontrolled Inversion of Supramolecular Chirality in Nanostructures Coâ€assembled with Bipyridines. Chemistry - A European Journal, 2018, 24, 1509-1513.	1.7	44
21	Coâ€Assembled Supramolecular Nanostructure of Platinum(II) Complex through Helical Ribbon to Helical Tubes with Helical Inversion. Angewandte Chemie - International Edition, 2019, 58, 11709-11714.	7.2	43
22	Inversion of the Supramolecular Chirality of Nanofibrous Structures through Coâ€Assembly with Achiral Molecules. Angewandte Chemie, 2016, 128, 2457-2461.	1.6	39
23	Novel pH responsive hydrogels for controlled cell adhesion and triggered surface detachment. Soft Matter, 2012, 8, 9539.	1.2	37
24	Enhanced cell adhesion on a bio-inspired hierarchically structured polyester modified with gelatin-methacrylate. Biomaterials Science, 2018, 6, 785-792.	2.6	34
25	Installing Logic Gates to Multiresponsive Supramolecular Hydrogel Co-assembled from Phenylalanine Amphiphile and Bis(pyridinyl) Derivative. Langmuir, 2015, 31, 7122-7128.	1.6	33
26	RGD anchored C2-benzene based PEG-like hydrogels as scaffolds for two and three dimensional cell cultures. Journal of Materials Chemistry B, 2013, 1, 3562.	2.9	29
27	Galactose-decorated light-responsive hydrogelator precursors for selectively killing cancer cells. Chemical Communications, 2016, 52, 12574-12577.	2.2	28
28	Convenient Three-Dimensional Cell Culture in Supermolecular Hydrogels. ACS Applied Materials & Interfaces, 2014, 6, 7948-7952.	4.0	27
29	Influence of C–H···O Hydrogen Bonds on Macroscopic Properties of Supramolecular Assembly. ACS Applied Materials & Interfaces, 2016, 8, 5188-5195.	4.0	27
30	Metalâ€lonâ€Mediated Supramolecular Chirality of <scp>l</scp> â€Phenylalanine Based Hydrogels. Angewandte Chemie, 2018, 130, 5757-5761.	1.6	26
31	Rational design of coumarin-based supramolecular hydrogelators for cell imaging. Chemical Communications, 2014, 50, 15545-15548.	2.2	24
32	A Highly Efficient Selfâ€Assembly of Responsive <i>C</i> ₂ yclohexaneâ€Đerived Gelators. Macromolecular Rapid Communications, 2012, 33, 1535-1541.	2.0	22
33	Biotin–Avidin Based Universal Cell–Matrix Interaction for Promoting Three-Dimensional Cell Adhesion. ACS Applied Materials & Interfaces, 2015, 7, 20786-20792.	4.0	22
34	Chirality Bias Tissue Homeostasis by Manipulating Immunological Response. Advanced Materials, 2022, 34, e2105136.	11.1	22
35	Modulating Supramolecular Chirality in Alanine Derived Assemblies by Multiple External Stimuli. Langmuir, 2018, 34, 7869-7876.	1.6	20
36	Wrapping Chiral Nanoribbons into Coiled and Condensed Microstructures in Supramolecular Hydrogels. Advanced Functional Materials, 2020, 30, 2002936.	7.8	19

#	Article	IF	CITATIONS
37	Bio-inspired chiral self-assemblies promoted neuronal differentiation of retinal progenitor cells through activation of metabolic pathway. Bioactive Materials, 2021, 6, 990-997.	8.6	19
38	C2-symmetric benzene-based organogels: A rationally designed LMOG and its application in marine oil spill. Journal of Molecular Liquids, 2014, 190, 94-98.	2.3	18
39	Photoresponsive Coumarinâ€Based Supramolecular Hydrogel for Controllable Dye Release. Macromolecular Chemistry and Physics, 2018, 219, 1700398.	1.1	18
40	Redox-Driven <i>In Situ</i> Helix Reversal of Graphene-Based Hydrogels. ACS Nano, 2020, 14, 17151-17162.	7.3	18
41	Chirality Transfer in Supramolecular Co-assembled Fibrous Material Enabling the Visual Recognition of Sucrose. Advanced Fiber Materials, 2020, 2, 204-211.	7.9	18
42	Chirality-influenced antibacterial activity of methylthiazole- and thiadiazole-based supramolecular biocompatible hydrogels. Acta Biomaterialia, 2022, 141, 59-69.	4.1	18
43	The Cooperative Effect of Both Molecular and Supramolecular Chirality on Cell Adhesion. Angewandte Chemie, 2018, 130, 6585-6589.	1.6	17
44	Autoinducer Sensing Microarrays by Reporter Bacteria Encapsulated in Hybrid Supramolecularâ€Polysaccharide Hydrogels. Macromolecular Bioscience, 2017, 17, 1700176.	2.1	16
45	Visible Enantiomer Discrimination via Diphenylalanine-Based Chiral Supramolecular Self-Assembly on Multiple Platforms. Langmuir, 2020, 36, 2524-2533.	1.6	16
46	Coassembly Modulated pHâ€Responsive Hydrogel for Dye Absorption and Release. Macromolecular Chemistry and Physics, 2017, 218, 1600560.	1.1	15
47	Tuning Syneresis Properties of Kappaâ€Carrageenan Hydrogel by C2â€Symmetric Benzeneâ€Based Supramolecular Gelators. Macromolecular Chemistry and Physics, 2016, 217, 1197-1204.	1.1	14
48	Mechanically Stable C2-Phenylalanine Hybrid Hydrogels for Manipulating Cell Adhesion. ACS Applied Materials & Interfaces, 2019, 11, 28657-28664.	4.0	14
49	Solventâ€Controlled Topological Evolution from Nanospheres to Superhelices. Small, 2020, 16, 2004756.	5.2	14
50	Chirality-Enabled Liquid Crystalline Physical Gels with High Modulus but Low Driving Voltage. ACS Applied Materials & Interfaces, 2018, 10, 43184-43191.	4.0	13
51	Coâ€Assembled Supramolecular Nanostructure of Platinum(II) Complex through Helical Ribbon to Helical Tubes with Helical Inversion. Angewandte Chemie, 2019, 131, 11835-11840.	1.6	13
52	Trends in design of C2-symmetric supramolecular chiral gelators. European Polymer Journal, 2019, 117, 236-253.	2.6	13
53	Ultrasmall Zwitterionic Polypeptide-Coordinated Nanohybrids for Highly Efficient Cancer Photothermal Ferrotherapy. ACS Applied Materials & Interfaces, 2021, 13, 44002-44012.	4.0	13
54	Chiral helical supramolecular hydrogels with adjustable pitch and diameter towards high-performance chiroptical detecting. Giant, 2021, 8, 100077.	2.5	13

#	Article	IF	CITATIONS
55	Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays. Langmuir, 2017, 33, 7799-7809.	1.6	12
56	Controlled chiral transcription and efficient separation via graphene oxide encapsulated helical supramolecular assembly. Carbon, 2020, 165, 82-89.	5.4	12
57	Effect of Stereochemistry on Chirality and Gelation Properties of Supramolecular Selfâ€Assemblies. Chemistry - A European Journal, 2021, 27, 3119-3129.	1.7	12
58	Chiral graphene-based supramolecular hydrogels toward tumor therapy. Polymer Chemistry, 2022, 13, 1685-1694.	1.9	12
59	Selective encapsulation of dye molecules in dendrimer/polymer multilayer microcapsules by DNA hybridization. Journal of Materials Chemistry, 2010, 20, 1438.	6.7	11
60	[2 + 2] Photocycloaddition Reaction Regulated the Stability and Morphology of Hydrogels. Advanced Fiber Materials, 2019, 1, 241-247.	7.9	11
61	Antimicrobial Activity with Enhanced Mechanical Properties in Phenylalanine-Based Chiral Coassembled Hydrogels: The Influence of Pyridine Hydrazide Derivatives. ACS Applied Bio Materials, 2020, 3, 2295-2304.	2.3	11
62	Induction of Chirality in Supramolecular Coassemblies Built from Achiral Precursors. Journal of Physical Chemistry Letters, 2021, 12, 1155-1161.	2.1	11
63	Hydrogen-bonding regulated supramolecular chirality with controllable biostability. Nano Research, 2022, 15, 2226-2234.	5.8	11
64	DNA hybridization induced selective encapsulation of small dye molecules in dendrimer based microcapsules. Analyst, The, 2010, 135, 2939.	1.7	10
65	Non-invasively visualizing cell–matrix interactions in two-photon excited supramolecular hydrogels. Journal of Materials Chemistry B, 2017, 5, 7790-7795.	2.9	10
66	Three-Dimensional Chiral Supramolecular Microenvironment Strategy for Enhanced Biocatalysis. ACS Nano, 2021, 15, 14972-14984.	7.3	10
67	Hybrid hydrogels assembled from phenylalanine derivatives and agarose with enhanced mechanical strength. Chemical Research in Chinese Universities, 2016, 32, 872-876.	1.3	9
68	Deciphering the structure-property relationship in coumarin-based supramolecular organogel materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124744.	2.3	9
69	Co-organizing synthesis of heterogeneous nanostructures through the photo-cleavage of pre-stabilized self-assemblies. Chemical Communications, 2017, 53, 4702-4705.	2.2	8
70	Molecular recognition of melamine and cyanuric acid by C2-symmetric phenylalanine based supramolecular hydrogels. European Polymer Journal, 2019, 118, 170-175.	2.6	8
71	Herbâ€Functionalized Chronic Wound Dressings for Enhancing Biological Functions: Multiple Flavonoids Coordination Driven Strategy. Advanced Functional Materials, 2022, 32, .	7.8	7
72	Highly directional co-assembly of 2,6-pyridinedicarboxylic acid and 4-hydroxypyridine based on low molecular weight gelators. Journal of Molecular Liquids, 2013, 180, 129-134.	2.3	6

#	Article	IF	CITATIONS
73	Inversion of Supramolecular Chirality by In Situ Hydrolyzation of Achiral Diethylene Glycol Motifs. Journal of Physical Chemistry B, 2022, 126, 1325-1333.	1.2	6
74	Dual-Specific Interaction to Detect DNA on Gold Nanoparticles. Sensors, 2013, 13, 5749-5756.	2.1	3
75	Photoresponsive Supramolecular Hydrogel Co-assembled from Fmoc-Phe-OH and 4,4′-Azopyridine for Controllable Dye Release. Chinese Journal of Polymer Science (English Edition), 2019, 37, 437-443.	2.0	3
76	Controlled mechanical properties and supramolecular chirality of hydrogels via pH change. MethodsX, 2019, 6, 417-423.	0.7	3
77	Rational Fabrication of Multiple Dimensional Assemblies from Tryptophanâ€Based Racemate. Chemistry - A European Journal, 2021, 27, 14911-14920.	1.7	2
78	Use of Electrospun Phenylalanine/Poly-Îμ-Caprolactone Chiral Hybrid Scaffolds to Promote Endothelial Remodeling. Frontiers in Bioengineering and Biotechnology, 2021, 9, 773635.	2.0	2
79	Time-Dependent Investigation of Surface Nanostructures of Weak-Phase-Separated Block Copolymer Films. Langmuir, 2015, 31, 9026-9032.	1.6	1
80	Effect of aromatic core on the supramolecular chirality of l-phenylalanine derived assemblies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125709.	2.3	1
81	Single point halogenation regulates supramolecular chirality in phenylalanine based coâ€assembled system. Polymer International, 0, , .	1.6	1
82	Innentitelbild: Inversion of the Supramolecular Chirality of Nanofibrous Structures through Coâ€Assembly with Achiral Molecules (Angew. Chem. 7/2016). Angewandte Chemie, 2016, 128, 2318-2318.	1.6	0
83	Macromol. Biosci. 11/2017. Macromolecular Bioscience, 2017, 17, .	2.1	0