Hongyu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5443524/publications.pdf

Version: 2024-02-01

236912 233409 2,260 71 25 45 citations h-index g-index papers 71 71 71 1950 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Isolation and Identification of Cellulolytic Bacteria from the Gut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae). International Journal of Molecular Sciences, 2012, 13, 2563-2577.	4.1	200
2	RNA Interference of Four Genes in Adult Bactrocera dorsalis by Feeding Their dsRNAs. PLoS ONE, 2011, 6, e17788.	2.5	152
3	Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. Journal of Applied Microbiology, 2011, 110, 1390-1401.	3.1	126
4	Bacterial Communities in the Gut and Reproductive Organs of Bactrocera minax (Diptera: Tephritidae) Based on 454 Pyrosequencing. PLoS ONE, 2014, 9, e106988.	2. 5	121
5	The dual oxidase gene <i>BdDuox</i> regulates the intestinal bacterial community homeostasis of <i>Bactrocera dorsalis</i> ISME Journal, 2016, 10, 1037-1050.	9.8	118
6	Identification of cultivable bacteria in the intestinal tract of <i>Bactrocera dorsalis</i> from three different populations and determination of their attractive potential. Pest Management Science, 2014, 70, 80-87.	3.4	106
7	Gut microbiota promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis. PLoS Pathogens, 2020, 16, e1008441.	4.7	73
8	Odorant receptor co-receptor Orco is upregulated by methyl eugenol in male Bactrocera dorsalis (Diptera: Tephritidae). Journal of Insect Physiology, 2012, 58, 1122-1127.	2.0	67
9	Intestinal probiotics restore the ecological fitness decline of <i>Bactrocera dorsalis</i> by irradiation. Evolutionary Applications, 2018, 11, 1946-1963.	3.1	64
10	Autochthonous bacterial flora indicated by PCR-DGGE of 16S rRNA gene fragments from the alimentary tract of <i> Costelytra zealandica < /i > (Coleoptera: Scarabaeidae). Journal of Applied Microbiology, 2008, 105, 1277-1285.</i>	3.1	57
11	The Impact of Environmental Heterogeneity and Life Stage on the Hindgut Microbiota of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae). PLoS ONE, 2013, 8, e57169.	2.5	57
12	Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference. Scientific Reports, 2015, 5, 8700.	3.3	57
13	High-Throughput Sequencing to Reveal Genes Involved in Reproduction and Development in Bactrocera dorsalis (Diptera: Tephritidae). PLoS ONE, 2012, 7, e36463.	2.5	57
14	Low Diversity Bacterial Community and the Trapping Activity of Metabolites from Cultivable Bacteria Species in the Female Reproductive System of the Oriental Fruit Fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae). International Journal of Molecular Sciences, 2012, 13, 6266-6278.	4.1	56
15	Identification and Expression Profile Analysis of Odorant Binding Proteins in the Oriental Fruit Fly Bactrocera dorsalis. International Journal of Molecular Sciences, 2013, 14, 14936-14949.	4.1	56
16	Regulatory mechanisms of microbial homeostasis in insect gut. Insect Science, 2021, 28, 286-301.	3.0	47
17	Tephritidae fruit fly gut microbiome diversity, function and potential for applications. Bulletin of Entomological Research, 2020, 110, 423-437.	1.0	45
18	16S rRNA Gene Sequencing Reveals a Shift in the Microbiota of Diaphorina citri During the Psyllid Life Cycle. Frontiers in Microbiology, 2019, 10, 1948.	3.5	39

#	Article	IF	CITATIONS
19	The role of the transformer gene in sex determination and reproduction in the tephritid fruit fly, Bactrocera dorsalis (Hendel). Genetica, 2015, 143, 717-727.	1.1	35
20	miRNA-1-3p is an early embryonic male sex-determining factor in the Oriental fruit fly Bactrocera dorsalis. Nature Communications, 2020, 11, 932.	12.8	35
21	Isolation, Screening, and Optimization of the Fermentation Conditions of Highly Cellulolytic Bacteria from the Hindgut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae). Applied Biochemistry and Biotechnology, 2012, 167, 270-284.	2.9	33
22	A genetically enhanced sterile insect technique against the fruit fly, Bactrocera dorsalis (Hendel) by feeding adult double-stranded RNAs. Scientific Reports, 2017, 7, 4063.	3.3	32
23	RNA sequencing to characterize transcriptional changes of sexual maturation and mating in the female oriental fruit fly Bactrocera dorsalis. BMC Genomics, 2016, 17, 194.	2.8	31
24	Biofunctional analysis of Vitellogenin and Vitellogenin receptor in citrus red mites, Panonychus citri by RNA interference. Scientific Reports, 2017, 7, 16123.	3.3	31
25	Identification and Characterization of Sex-Biased MicroRNAs in Bactrocera dorsalis (Hendel). PLoS ONE, 2016, 11, e0159591.	2.5	29
26	Similar Shift Patterns in Gut Bacterial and Fungal Communities Across the Life Stages of Bactrocera minax Larvae From Two Field Populations. Frontiers in Microbiology, 2019, 10, 2262.	3.5	28
27	Identification, characterization and target gene analysis of testicular microRNAs in the oriental fruit fly <i>Bactrocera dorsalis</i> . Insect Molecular Biology, 2016, 25, 32-43.	2.0	27
28	miR-8-3p regulates mitoferrin in the testes of Bactrocera dorsalis to ensure normal spermatogenesis. Scientific Reports, 2016, 6, 22565.	3.3	26
29	Isolation and characterization of Aschersonia placenta from citrus orchards and its pathogenicity towards Dialeurodes citri (Ashmead). Journal of Invertebrate Pathology, 2013, 112, 122-128.	3.2	25
30	The effects of RNA interference targeting Bactrocera dorsalis ds-Bdrpl19 on the gene expression of rpl19 in non-target insects. Ecotoxicology, 2015, 24, 595-603.	2.4	24
31	Identification and expression profiles of novel odorant binding proteins and functional analysis of <i>OBP99a</i> in <i>Bactrocera dorsalis</i> Archives of Insect Biochemistry and Physiology, 2018, 98, e21452.	1.5	23
32	Characterization and partial purification of proteinases from the highly alkaline midgut of the humivorous larvae of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Soil Biology and Biochemistry, 2004, 36, 435-442.	8.8	22
33	The Effect of Ultraviolet-A Radiation Exposure on the Reproductive Ability, Longevity, and Development of the <i>Dialeurodes citri </i> (Homoptera: Aleyrodidae) F1 Generation. Environmental Entomology, 2015, 44, 1614-1618.	1.4	21
34	The noa gene is functionally linked to the activation of the Toll/Imd signaling pathways in Bactrocera dorsalis (Hendel). Developmental and Comparative Immunology, 2016, 55, 233-240.	2.3	21
35	Influence of the silencing sex-peptide receptor on Bactrocera dorsalis adults and offspring by feeding with ds-spr. Journal of Asia-Pacific Entomology, 2015, 18, 477-481.	0.9	19
36	Discovery and characterization of endo-xylanase and \hat{l}^2 -xylosidase from a highly xylanolytic bacterium in the hindgut of Holotrichia parallela larvae. Journal of Molecular Catalysis B: Enzymatic, 2014, 105, 33-40.	1.8	18

3

#	Article	IF	CITATIONS
37	RNAi-Mediated Knockdown of Tssk1 and Tektin1 Genes Impair Male Fertility in Bactrocera dorsalis. Insects, 2019, 10, 164.	2.2	18
38	De Novo Assembly and Transcriptome Analysis of the Mediterranean Fruit Fly Ceratitis capitata Early Embryos. PLoS ONE, 2014, 9, e114191.	2.5	17
39	The toxicity of flonicamid to cotton leafhopper, <i>Amrasca biguttula</i> (Ishida), is by disruption of ingestion: an electropenetrography study. Pest Management Science, 2017, 73, 1661-1669.	3.4	16
40	Functional and Numerical Responses of Three Species of Predatory Phytoseiid Mites (Acari:) Tj ETQq0 0 0 rgBT /	Overlock 1 1.2	0 Tf 50 622 T
41	High Genetic Diversity of Microbial Cellulase and Hemicellulase Genes in the Hindgut of Holotrichia parallela Larvae. International Journal of Molecular Sciences, 2015, 16, 16545-16559.	4.1	15
42	Population genetic structure of Diaphorina citri Kuwayama (Hemiptera: Liviidae): host-driven genetic differentiation in China. Scientific Reports, 2018, 8, 1473.	3.3	15
43	Complete genome sequence of Bacillus velezensis ZY-1-1 reveals the genetic basis for its hemicellulosic/cellulosic substrate-inducible xylanase and cellulase activities. 3 Biotech, 2018, 8, 465.	2.2	15
44	The PLA2 gene mediates the humoral immune responses in Bactrocera dorsalis (Hendel). Developmental and Comparative Immunology, 2017, 67, 293-299.	2.3	14
45	The inducible blockage of RNAi reveals a role for polyunsaturated fatty acids in the regulation of dsRNA-endocytic capacity in Bactrocera dorsalis. Scientific Reports, 2017, 7, 5584.	3.3	12
46	Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPRâ€associated 9â€mediated mutagenesis of the <i>multiple edematous wings</i> gene induces muscle weakness and flightlessness in <i>Bactrocera dorsalis</i> (Diptera: Tephritidae). Insect Molecular Biology, 2019, 28, 222-234.	2.0	12
47	Morphology and ultrastructure of the hindgut fermentation chamber of a melolonthine beetle Holotrichia parallela (Coleoptera: Scarabaeidae) during larval development. Micron, 2012, 43, 638-642.	2.2	11
48	Cultivable anaerobic and aerobic bacterial communities in the fermentation chambers of Holotrichia parallela (coleoptera: scarabaeidae) larvae. PLoS ONE, 2018, 13, e0190663.	2.5	10
49	Predation and functional response of the multi-coloured Asian ladybeetle <i>Harmonia axyridis</i> on the adult Asian citrus psyllid <i>Diaphorina citri</i> . Biocontrol Science and Technology, 2019, 29, 293-307.	1.3	10
50	Isolation, characterization, culturing, and formulation of a new Beauveria bassiana fungus against Diaphorina citri. Biological Control, 2021, 158, 104586.	3.0	10
51	Isolation, fermentation, and formulation of entomopathogenic fungi virulent against adults of <pre><scp><i>Diaphorina citri</i></scp></pre> <pre>/i>Compare the compared to the co</pre>	3.4	9
52	Gut fungal community and its probiotic effect on <i>Bactrocera dorsalis</i> . Insect Science, 2022, 29, 1145-1158.	3.0	9
53	RNA Interference-Based Silencing of the Chitin Synthase 1 Gene for Reproductive and Developmental Disruptions in Panonychus citri. Insects, 2020, 11, 786.	2.2	8
54	Intraguild predation among the predatory mites <i>Amblyseius eharai</i> , <i>Amblyseius cucumeris</i> and <i>Amblyseius barkeri</i> . Biocontrol Science and Technology, 2014, 24, 103-115.	1.3	7

#	Article	IF	CITATIONS
55	Blue light-induced immunosuppression in <i>Bactrocera dorsalis</i> adults, as a carryover effect of larval exposure. Bulletin of Entomological Research, 2017, 107, 734-741.	1.0	7
56	Identification of COP9 Signalosome Subunit Genes in Bactrocera dorsalis and Functional Analysis of csn3 in Female Fecundity. Frontiers in Physiology, 2019, 10, 162.	2.8	7
57	A Shift Pattern of Bacterial Communities Across the Life Stages of the Citrus Red Mite, Panonychus citri. Frontiers in Microbiology, 2020, 11, 1620.	3.5	7
58	Early embryonic transcriptomes of <i>Zeugodacus tau</i> provide insight into sex determination and differentiation genes. Insect Science, 2022, 29, 915-931.	3.0	7
59	Dietary Effects on Biological Parameters and Gut Microbiota of Harmonia axyridis. Frontiers in Microbiology, 2021, 12, 818787.	3.5	6
60	Comparative genomics of Klebsiella michiganensis BD177 and related members of Klebsiella sp. reveal the symbiotic relationship with Bactrocera dorsalis. BMC Genetics, 2020, 21, 138.	2.7	5
61	Integrated analysis of miRNA and mRNA expression profiles in response to gut microbiota depletion in the abdomens of female <i>Bactrocera dorsalis</i> Insect Science, 2023, 30, 443-458.	3.0	5
62	The Negative Regulative Roles of BdPGRPs in the Imd Signaling Pathway of Bactrocera dorsalis. Cells, 2022, 11, 152.	4.1	4
63	Small GTPase Rab40C is upregulated by 20â€hydroxyecdysone and insulin pathways to regulate ovarian development and fecundity. Insect Science, 2022, 29, 1583-1600.	3.0	4
64	Effect of host plants on development and reproduction of <i>Diaphorina citri</i> and their host preference. Entomologia Experimentalis Et Applicata, 2022, 170, 700-707.	1.4	4
65	Transcriptome Analysis of the Oriental Fruit Fly Bactrocera dorsalis Early Embryos. Insects, 2020, 11, 323.	2.2	3
66	Title is missing!. , 2020, 16, e1008441.		0
67	Title is missing!. , 2020, 16, e1008441.		0
68	Title is missing!. , 2020, 16, e1008441.		0
69	Title is missing!. , 2020, 16, e1008441.		0
70	Title is missing!. , 2020, 16, e1008441.		0
71	Title is missing!. , 2020, 16, e1008441.		0