
Lee R Dehaan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5443488/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Re-imagining crop domestication in the era of high throughput phenomics. Current Opinion in Plant Biology, 2022, 65, 102150.	3.5	16
2	Gourmet grasslands: Harvesting a perennial future. One Earth, 2022, 5, 14-17.	3.6	2
3	Accelerated Domestication of New Crops: Yield is Key. Plant and Cell Physiology, 2022, 63, 1624-1640.	1.5	16
4	Genetic architecture and QTL selection response for Kernza perennial grain domestication traits. Theoretical and Applied Genetics, 2022, 135, 2769-2784.	1.8	4
5	Effects of seeding date on grain and biomass yield of intermediate wheatgrass. Agronomy Journal, 2022, 114, 2342-2351.	0.9	7
6	Floret site utilization and reproductive tiller number are primary components of grain yield in intermediate wheatgrass spaced plants. Crop Science, 2021, 61, 1073-1088.	0.8	19
7	Nested association mapping reveals the genetic architecture of spike emergence and anthesis timing in intermediate wheatgrass. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	11
8	Post-Harvest Management Practices Impact on Light Penetration and Kernza Intermediate Wheatgrass Yield Components. Agronomy, 2021, 11, 442.	1.3	17
9	Genomic prediction enables rapid selection of highâ€performing genets in an intermediate wheatgrass breeding program. Plant Genome, 2021, 14, e20080.	1.6	21
10	Development of wholeâ€genome prediction models to increase the rate of genetic gain in intermediate wheatgrass (<i>Thinopyrum intermedium</i>) breeding. Plant Genome, 2021, 14, e20089.	1.6	12
11	Process-based analysis of Thinopyrum intermedium phenological development highlights the importance of dual induction for reproductive growth and agronomic performance. Agricultural and Forest Meteorology, 2021, 301-302, 108341.	1.9	17
12	QTL for seed shattering and threshability in intermediate wheatgrass align closely with wellâ€studied orthologs from wheat, barley, and rice. Plant Genome, 2021, 14, e20145.	1.6	8
13	Carbon and water relations in perennial Kernza (Thinopyrum intermedium): An overview. Plant Science, 2020, 295, 110279.	1.7	25
14	Sequenced-based paternity analysis to improve breeding and identify self-incompatibility loci in intermediate wheatgrass (Thinopyrum intermedium). Theoretical and Applied Genetics, 2020, 133, 3217-3233.	1.8	13
15	â€~MN learwater', the first foodâ€grade intermediate wheatgrass (Kernza perennial grain) cultivar. Journal of Plant Registrations, 2020, 14, 288-297.	0.4	58
16	New Food Crop Domestication in the Age of Gene Editing: Genetic, Agronomic and Cultural Change Remain Co-evolutionarily Entangled. Frontiers in Plant Science, 2020, 11, 789.	1.7	56
17	Roadmap for Accelerated Domestication of an Emerging Perennial Grain Crop. Trends in Plant Science, 2020, 25, 525-537.	4.3	65
18	Enhancing Crop Domestication Through Genomic Selection, a Case Study of Intermediate Wheatgrass. Frontiers in Plant Science, 2020, 11, 319.	1.7	28

LEE R DEHAAN

#	Article	IF	CITATIONS
19	Integrating multipurpose perennial grains crops in Western European farming systems. Agriculture, Ecosystems and Environment, 2019, 284, 106591.	2.5	28
20	Quantitative Trait Loci (QTL) for Forage Traits in Intermediate Wheatgrass When Grown as Spaced-Plants versus Monoculture and Polyculture Swards. Agronomy, 2019, 9, 580.	1.3	7
21	Genome mapping of quantitative trait loci (QTL) controlling domestication traits of intermediate wheatgrass (Thinopyrum intermedium). Theoretical and Applied Genetics, 2019, 132, 2325-2351.	1.8	30
22	Contrasting Physiological and Environmental Controls of Evapotranspiration over Kernza Perennial Crop, Annual Crops, and C4 and Mixed C3/C4 Grasslands. Sustainability, 2019, 11, 1640.	1.6	12
23	Building a botanical foundation for perennial agriculture: Global inventory of wild, perennial herbaceous Fabaceae species. Plants People Planet, 2019, 1, 375-386.	1.6	28
24	Energy, water and carbon exchange over a perennial Kernza wheatgrass crop. Agricultural and Forest Meteorology, 2018, 249, 120-137.	1.9	49
25	Development and Evolution of an Intermediate Wheatgrass Domestication Program. Sustainability, 2018, 10, 1499.	1.6	89
26	Maintaining grain yields of the perennial cereal intermediate wheatgrass in monoculture <i>v.</i> bi-culture with alfalfa in the Upper Midwestern USA. Journal of Agricultural Science, 2018, 156, 758-773.	0.6	46
27	Transcriptome assembly and annotation of johnsongrass (<i>Sorghum halepense</i>) rhizomes identify candidate rhizomeâ€specific genes. Plant Direct, 2018, 2, e00065.	0.8	8
28	Managing for Multifunctionality in Perennial Grain Crops. BioScience, 2018, 68, 294-304.	2.2	113
29	Development of the first consensus genetic map of intermediate wheatgrass (Thinopyrum) Tj ETQq1 1 0.78431	4 rgBT /Ov	verlack 10 Tr
30	Perennial Cereals Provide Ecosystem Benefits. Cereal Foods World, 2017, 62, 278-281.	0.7	51
31	Intermediate Wheatgrass Grain and Forage Yield Responses to Nitrogen Fertilization. Agronomy Journal, 2017, 109, 462-472.	0.9	73
32	Uncovering the Genetic Architecture of Seed Weight and Size in Intermediate Wheatgrass through Linkage and Association Mapping. Plant Genome, 2017, 10, plantgenome2017.03.0022.	1.6	26
33	Establishment and Optimization of Genomic Selection to Accelerate the Domestication and Improvement of Intermediate Wheatgrass. Plant Genome, 2016, 9, plantgenome2015.07.0059.	1.6	86
34	A Pipeline Strategy for Grain Crop Domestication. Crop Science, 2016, 56, 917-930.	0.8	101
35	Towards the understanding of end-use quality in intermediate wheatgrass (Thinopyrum intermedium): High-molecular-weight glutenin subunits, protein polymerization, and mixing characteristics. Journal of Cereal Science, 2015, 66, 81-88.	1.8	20
36	The Strong Perennial Vision: A Response. Agroecology and Sustainable Food Systems, 2015, 39, 500-515.	1.0	44

LEE R DEHAAN

#	Article	IF	CITATIONS
37	Genome evolution of intermediate wheatgrass as revealed by EST-SSR markers developed from its three progenitor diploid species. Genome, 2015, 58, 63-70.	0.9	35
38	The Reflective Plant Breeding Paradigm: A Robust System of Germplasm Development to Support Strategic Diversification of Agroecosystems. Crop Science, 2014, 54, 1939-1948.	0.8	35
39	Useful insights from evolutionary biology for developing perennial grain crops ¹ . American Journal of Botany, 2014, 101, 1801-1819.	0.8	39
40	New insights into high-molecular-weight glutenin subunits and sub-genomes of the perennial crop Thinopyrum intermedium (Triticeae). Journal of Cereal Science, 2014, 59, 203-210.	1.8	22
41	Soil and Water Quality Rapidly Responds to the Perennial Grain Kernza Wheatgrass. Agronomy Journal, 2013, 105, 735-744.	0.9	192
42	Wild Plants to the Rescue. American Scientist, 2013, 100, 218.	0.1	8
43	Perennial cereal crops: An initial evaluation of wheat derivatives. Field Crops Research, 2012, 133, 68-89.	2.3	65
44	Agricultural and biofuel implications of a species diversity experiment with native perennial grassland plants. Agriculture, Ecosystems and Environment, 2010, 137, 33-38.	2.5	42
45	Harvested perennial grasslands provide ecological benchmarks for agricultural sustainability. Agriculture, Ecosystems and Environment, 2010, 137, 3-12.	2.5	154
46	Missing domesticated plant forms: can artificial selection fill the gap?. Evolutionary Applications, 2010, 3, 434-452.	1.5	78
47	Increased Food and Ecosystem Security via Perennial Grains. Science, 2010, 328, 1638-1639.	6.0	397
48	Progress in breeding perennial grains. Crop and Pasture Science, 2010, 61, 513.	0.7	105
49	Genetic Variation in Three Native Plant Species across the State of Minnesota. Crop Science, 2007, 47, 2379-2389.	0.8	17
50	Response to inoculation in Illinois bundleflower. Canadian Journal of Plant Science, 2006, 86, 919-926.	0.3	5
51	Evaluation of Diversity among North American Accessions of False Indigo (Amorpha fruticosa L.) for Forage and Biomass. Genetic Resources and Crop Evolution, 2006, 53, 1463-1476.	0.8	15
52	Prospects for Developing Perennial Grain Crops. BioScience, 2006, 56, 649.	2.2	210
53	Perennial grain crops: A synthesis of ecology and plant breeding. Renewable Agriculture and Food Systems, 2005, 20, 5-14.	0.8	119
54	Illinois Bundleflower Genetic Diversity Determined by AFLP Analysis. Crop Science, 2003, 43, 402.	0.8	8

LEE R DEHAAN

#	Article	IF	CITATIONS
55	Illinois Bundleflower Genetic Diversity Determined by AFLP Analysis. Crop Science, 2003, 43, 402.	0.8	2
56	Evaluation of Diversity among and within Accessions of Illinois Bundleflower. Crop Science, 2003, 43, 1528-1537.	0.8	17
57	Kura clover and birdsfoot trefoil response to soil pH. Communications in Soil Science and Plant Analysis, 2002, 33, 1435-1449.	0.6	5
58	Peakmatcher. Crop Science, 2002, 42, 1361-1364.	0.8	19
59	Recurrent Selection for Seedling Vigor in Kura Clover. Crop Science, 2001, 41, 1034-1041.	0.8	9
60	Genetic architecture of yield component traits in the new perennial grain crop, intermediate wheatgrass (Thinopyrum intermedium). Crop Science, 0, , .	0.8	1