
Paul R Langford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5443467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diagnosis of Childhood Tuberculosis and Host RNA Expression in Africa. New England Journal of Medicine, 2014, 370, 1712-1723.	13.9	324
2	Actinobacillus pleuropneumoniae: pathobiology and pathogenesis of infection. Microbes and Infection, 2002, 4, 225-235.	1.0	318
3	Detection of Tuberculosis in HIV-Infected and -Uninfected African Adults Using Whole Blood RNA Expression Signatures: A Case-Control Study. PLoS Medicine, 2013, 10, e1001538.	3.9	314
4	Acquired predisposition to mycobacterial disease due to autoantibodies to IFN-Î ³ . Journal of Clinical Investigation, 2005, 115, 2480-2488.	3.9	206
5	Dysbiosis Anticipating Necrotizing Enterocolitis in Very Premature Infants. Clinical Infectious Diseases, 2015, 60, 389-397.	2.9	168
6	Natural genetic exchange between Haemophilus and Neisseria: Intergeneric transfer of chromosomal genes between major human pathogens. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12381-12385.	3.3	144
7	Bacterial copper―and zincâ€cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis. Molecular Microbiology, 1997, 25, 785-796.	1.2	137
8	Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis. Nature Communications, 2015, 6, 6740.	5.8	124
9	Periplasmic Superoxide Dismutase in Meningococcal Pathogenicity. Infection and Immunity, 1998, 66, 213-217.	1.0	111
10	A Novel CRP-dependent Regulon Controls Expression of Competence Genes in Haemophilus influenzae. Journal of Molecular Biology, 2005, 347, 735-747.	2.0	109
11	Anti-mycobacterial activities of synthetic cationic \hat{i} ±-helical peptides and their synergism with rifampicin. Biomaterials, 2014, 35, 2032-2038.	5.7	105
12	Copper-zinc superoxide dismutase of Haemophilus influenzae and H. parainfluenzae. Journal of Bacteriology, 1991, 173, 7449-7457.	1.0	99
13	Identification of Actinobacillus pleuropneumoniae Genes Important for Survival during Infection in Its Natural Host. Infection and Immunity, 2003, 71, 3960-3970.	1.0	89
14	ISApl1, a novel insertion element of Actinobacillus pleuropneumoniae, prevents ApxIV-based serological detection of serotype 7 strain AP76. Veterinary Microbiology, 2008, 128, 342-353.	0.8	86
15	Development of a Multiplex PCR Assay for Rapid Molecular Serotyping of Haemophilus parasuis. Journal of Clinical Microbiology, 2015, 53, 3812-3821.	1.8	80
16	Disruption of drug-resistant biofilms using de novo designed short α-helical antimicrobial peptides with idealized facial amphiphilicity. Acta Biomaterialia, 2017, 57, 103-114.	4.1	77
17	Late-Onset Bloodstream Infection and Perturbed Maturation of the Gastrointestinal Microbiota in Premature Infants. PLoS ONE, 2015, 10, e0132923.	1.1	75
18	Factor H, a regulator of complement activity, is a major determinant of meningococcal disease susceptibility in UK Caucasian patients. Scandinavian Journal of Infectious Diseases, 2006, 38, 764-771.	1.5	69

#	Article	lF	CITATIONS
19	Kawasaki Disease: The Role of Immune Complexes Revisited. Frontiers in Immunology, 2019, 10, 1156.	2.2	69
20	Regulation of <i>pga</i> Operon Expression and Biofilm Formation in <i>Actinobacillus pleuropneumoniae</i> by Ïf ^E and H-NS. Journal of Bacteriology, 2010, 192, 2414-2423.	1.0	64
21	Proposal of serovars 17 and 18 of Actinobacillus pleuropneumoniae based on serological and genotypic analysis. Veterinary Microbiology, 2018, 217, 1-6.	0.8	64
22	Proposal of Actinobacillus pleuropneumoniae serovar 19, and reformulation of previous multiplex PCRs for capsule-specific typing of all known serovars. Veterinary Microbiology, 2021, 255, 109021.	0.8	62
23	The Complete Genome Sequence of Actinobacillus pleuropneumoniae L20 (Serotype 5b). Journal of Bacteriology, 2008, 190, 1495-1496.	1.0	57
24	Unnatural amino acid analogues of membrane-active helical peptides with anti-mycobacterial activity and improved stability. Journal of Antimicrobial Chemotherapy, 2016, 71, 2181-2191.	1.3	55
25	A Histidine-rich Metal Binding Domain at the N Terminus of Cu,Zn-Superoxide Dismutases from Pathogenic Bacteria. Journal of Biological Chemistry, 2001, 276, 30315-30325.	1.6	54
26	Patterns of antimicrobial resistance in Streptococcus suis isolates from pigs with or without streptococcal disease in England between 2009 and 2014. Veterinary Microbiology, 2017, 207, 117-124.	0.8	53
27	Galleria mellonella is an effective model to study Actinobacillus pleuropneumoniae infection. Microbiology (United Kingdom), 2015, 161, 387-400.	0.7	52
28	Cu, Zn superoxide dismutase structure from a microbial pathogen establishes a class with a conserved dimer interface 1 1Edited by D. C. Rees. Journal of Molecular Biology, 2000, 296, 145-153.	2.0	51
29	Proteomic analysis of endometrium from fertile and infertile patients suggests a role for apolipoprotein A-I in embryo implantation failure and endometriosis. Molecular Human Reproduction, 2010, 16, 273-285.	1.3	51
30	Development of aHaemophilus two-dimensional protein database. Electrophoresis, 1997, 18, 1472-1482.	1.3	50
31	Expression of Heterologous Antigens in Commensal Neisseria spp.: Preservation of Conformational Epitopes with Vaccine Potential. Infection and Immunity, 2004, 72, 6511-6518.	1.0	49
32	Two TonB Systems in Actinobacillus pleuropneumoniae : Their Roles in Iron Acquisition and Virulence. Infection and Immunity, 2004, 72, 701-708.	1.0	49
33	Biomarker discovery in infectious diseases using SELDI. Future Microbiology, 2007, 2, 35-49.	1.0	49
34	Comparative sequence analysis of the capsular polysaccharide loci of Actinobacillus pleuropneumoniae serovars 1–18, and development of two multiplex PCRs for comprehensive capsule typing. Veterinary Microbiology, 2018, 220, 83-89.	0.8	49
35	Functional and crystallographic characterization of Salmonella typhimurium Cu,Zn superoxide dismutase coded by the sodCI virulence gene 1 1Edited by R. Huber. Journal of Molecular Biology, 2000, 302, 465-478.	2.0	47
36	Humoral Immune Responses to <i>Neisseria meningitidis</i> in Children. Infection and Immunity, 1999, 67, 2441-2451.	1.0	46

#	Article	IF	CITATIONS
37	Deletion of the Ferric Uptake Regulator Fur Impairs the In Vitro Growth and Virulence of Actinobacillus pleuropneumoniae. Infection and Immunity, 2005, 73, 3740-3744.	1.0	45
38	The role of two periplasmic copper- and zinc-cofactored superoxide dismutases in the virulence of Salmonella choleraesuis. Microbiology (United Kingdom), 2002, 148, 719-726.	0.7	45
39	Evidence for in vivo expression of transferrin-binding proteins in Haemophilus influenzae type b. Infection and Immunity, 1992, 60, 2986-2991.	1.0	45
40	Identification ofsodCencoding periplasmic [Cu,Zn]-superoxide dismutase inSalmonella. FEMS Microbiology Letters, 1996, 136, 215-220.	0.7	44
41	Functional diversity of three different DsbA proteins from Neisseria meningitidis. Microbiology (United Kingdom), 2004, 150, 2993-3000.	0.7	42
42	Whole Genome Sequencing for Surveillance of Antimicrobial Resistance in Actinobacillus pleuropneumoniae. Frontiers in Microbiology, 2017, 8, 311.	1.5	42
43	Analysis of the <i>Actinobacillus pleuropneumoniae</i> ArcA Regulon Identifies Fumarate Reductase as a Determinant of Virulence. Infection and Immunity, 2008, 76, 2284-2295.	1.0	41
44	Surface Polysaccharide Mutants Reveal that Absence of O Antigen Reduces Biofilm Formation of Actinobacillus pleuropneumoniae. Infection and Immunity, 2016, 84, 127-137.	1.0	40
45	Bacterial Vaccine Antigen Discovery in the Reverse Vaccinology 2.0 Era: Progress and Challenges. Frontiers in Immunology, 2018, 9, 2315.	2.2	40
46	Multiplex PCR That Can Distinguish between Immunologically Cross- Reactive Serovar 3, 6, and 8 <i>Actinobacillus pleuropneumoniae</i> Strains. Journal of Clinical Microbiology, 2008, 46, 800-803.	1.8	39
47	[Cu,Zn]-Superoxide Dismutase Mutants of the Swine Pathogen Actinobacillus pleuropneumoniae Are Unattenuated in Infections of the Natural Host. Infection and Immunity, 2000, 68, 4778-4781.	1.0	37
48	New Plasmid Tools for Genetic Analysis of <i>Actinobacillus pleuropneumoniae</i> and Other <i>Pasteurellaceae</i> . Applied and Environmental Microbiology, 2009, 75, 6124-6131.	1.4	37
49	Gene Content and Diversity of the Loci Encoding Biosynthesis of Capsular Polysaccharides of the 15 Serovar Reference Strains of Haemophilus parasuis. Journal of Bacteriology, 2013, 195, 4264-4273.	1.0	37
50	A Unique Capsule Locus in the Newly Designated Actinobacillus pleuropneumoniae Serovar 16 and Development of a Diagnostic PCR Assay. Journal of Clinical Microbiology, 2017, 55, 902-907.	1.8	37
51	Role of bacterial Mn-cofactored superoxide dismutase in oxidative stress responses, nasopharyngeal colonization, and sustained bacteremia caused by Haemophilus influenzae type b. Infection and Immunity, 1997, 65, 2700-2706.	1.0	37
52	Identification of genes transcribed by <i>Haemophilus parasuis</i> in necrotic porcine lung through the selective capture of transcribed sequences (SCOTS). Environmental Microbiology, 2008, 10, 3326-3336.	1.8	36
53	Analysis of the <i>Actinobacillus pleuropneumoniae</i> HlyX (FNR) regulon and identification of ironâ€regulated protein B as an essential virulence factor. Proteomics, 2009, 9, 2383-2398.	1.3	36
54	Multiplex PCR Assay for Unequivocal Differentiation of Actinobacillus pleuropneumoniae Serovars 1 to 3, 5 to 8, 10, and 12. Journal of Clinical Microbiology, 2014, 52, 2380-2385.	1.8	36

#	Article	IF	CITATIONS
55	Natural competence in strains of <i>Actinobacillus pleuropneumoniae</i> . FEMS Microbiology Letters, 2009, 298, 124-130.	0.7	35
56	The use of genome wide association methods to investigate pathogenicity, population structure and serovar in Haemophilus parasuis. BMC Genomics, 2014, 15, 1179.	1.2	34
57	Characterisation of a mobilisable plasmid conferring florfenicol and chloramphenicol resistance in Actinobacillus pleuropneumoniae. Veterinary Microbiology, 2015, 178, 279-282.	0.8	34
58	Cellular Immune Responses to <i>Neisseria meningitidis</i> in Children. Infection and Immunity, 1999, 67, 2452-2463.	1.0	34
59	Haemophilus parasuis induces activation of NF-κB and MAP kinase signaling pathways mediated by toll-like receptors. Molecular Immunology, 2015, 65, 360-366.	1.0	33
60	Natural resistance to Meningococcal Disease related to CFH loci: Meta-analysis of genome-wide association studies. Scientific Reports, 2016, 6, 35842.	1.6	33
61	Bacterial [Cu,Zn]-Cofactored Superoxide Dismutase Protects Opsonized, Encapsulated Neisseria meningitidis from Phagocytosis by Human Monocytes/Macrophages. Infection and Immunity, 2003, 71, 1604-1607.	1.0	32
62	Molecular and genetic characterization of superoxide dismutase in Haemophilus influenzae type b. Molecular Microbiology, 1993, 10, 839-848.	1.2	30
63	Identification of <i>dfrA14</i> in two distinct plasmids conferring trimethoprim resistance in <i>Actinobacillus pleuropneumoniae</i> . Journal of Antimicrobial Chemotherapy, 2015, 70, 2217-2222.	1.3	30
64	The Adh adhesin domain is required for trimeric autotransporter Apa1-mediated Actinobacillus pleuropneumoniae adhesion, autoaggregation, biofilm formation and pathogenicity. Veterinary Microbiology, 2015, 177, 175-183.	0.8	29
65	The <i>N</i> -linking glycosylation system from <i>Actinobacillus pleuropneumoniae</i> is required for adhesion and has potential use in glycoengineering. Open Biology, 2017, 7, 160212.	1.5	29
66	Pathotyping the Zoonotic Pathogen Streptococcus suis: Novel Genetic Markers To Differentiate Invasive Disease-Associated Isolates from Non-Disease-Associated Isolates from England and Wales. Journal of Clinical Microbiology, 2019, 57, .	1.8	29
67	A Novel Heme Protein, the Cu,Zn-Superoxide Dismutase from Haemophilus ducreyi. Journal of Biological Chemistry, 2001, 276, 30326-30334.	1.6	28
68	Prevalence of <i>Actinobacillus pleuropneumoniae</i> serovars in England and Wales. Veterinary Record, 2010, 167, 661-662.	0.2	28
69	Pasteurellaceae ComE1 Proteins Combine the Properties of Fibronectin Adhesins and DNA Binding Competence Proteins. PLoS ONE, 2008, 3, e3991.	1.1	28
70	Whole genome investigation of a divergent clade of the pathogen Streptococcus suis. Frontiers in Microbiology, 2015, 6, 1191.	1.5	27
71	p518, a small floR plasmid from a South American isolate of Actinobacillus pleuropneumoniae. Veterinary Microbiology, 2017, 204, 129-132.	0.8	27
72	Identification and characterization of genomic loci unique to the Brazilian purpuric fever clonal group of H. influenzae biogroup aegyptius: functionality explored using meningococcal homology. Molecular Microbiology, 2003, 47, 1101-1111.	1.2	26

#	Article	IF	CITATIONS
73	Presence of Copper- and Zinc-Containing Superoxide Dismutase in Commensal Haemophilus haemolyticus Isolates Can Be Used as a Marker To Discriminate Them from Nontypeable H. influenzae Isolates. Journal of Clinical Microbiology, 2006, 44, 4222-4226.	1.8	26
74	Identification and characterization of novel antigenic vaccine candidates of Actinobacillus pleuropneumoniae. Vaccine, 2008, 26, 1942-1954.	1.7	26
75	Complete Genome Sequence of MIDG2331, a Genetically Tractable Serovar 8 Clinical Isolate of Actinobacillus pleuropneumoniae. Genome Announcements, 2016, 4, .	0.8	26
76	<i>Galleria mellonella -</i> a novel infection model for the <i>Mycobacterium tuberculosis</i> complex. Virulence, 2018, 9, 1126-1137.	1.8	26
77	Differential contribution of sodC1 and sodC2 to intracellular survival and pathogenicity of Salmonella enterica serovar Choleraesuis. Microbes and Infection, 2005, 7, 698-707.	1.0	25
78	Transcriptional Profiling of Neisseria meningitidis Interacting with Human Epithelial Cells in a Long-Term <i>In Vitro</i> Colonization Model. Infection and Immunity, 2013, 81, 4149-4159.	1.0	25
79	Identification of Reduced Host Transcriptomic Signatures for Tuberculosis Disease and Digital PCR-Based Validation and Quantification. Frontiers in Immunology, 2021, 12, 637164.	2.2	25
80	Structural, Functional, and Immunogenic Insights on Cu,Zn Superoxide Dismutase Pathogenic Virulence Factors from Neisseria meningitidis and Brucella abortus. Journal of Bacteriology, 2015, 197, 3834-3847.	1.0	24
81	PHiD-CV induces anti-Protein D antibodies but does not augment pulmonary clearance of nontypeable Haemophilus influenzae in mice. Vaccine, 2015, 33, 4954-4961.	1.7	24
82	Analysis of an Actinobacillus pleuropneumoniae multi-resistance plasmid, pHB0503. Plasmid, 2009, 61, 135-139.	0.4	23
83	Transcriptional Profiling of Serogroup B Neisseria meningitidis Growing in Human Blood: An Approach to Vaccine Antigen Discovery. PLoS ONE, 2012, 7, e39718.	1.1	23
84	Development of a self-replicating plasmid system for Mycoplasma hyopneumoniae. Veterinary Research, 2013, 44, 63.	1.1	23
85	The Generation of Successive Unmarked Mutations and Chromosomal Insertion of Heterologous Genes in Actinobacillus pleuropneumoniae Using Natural Transformation. PLoS ONE, 2014, 9, e111252.	1.1	23
86	Lineage-specific Virulence Determinants of <i>Haemophilus influenzae</i> Biogroup aegyptius. Emerging Infectious Diseases, 2012, 18, 449-457.	2.0	22
87	Free serum haemoglobin is associated with brain atrophy in secondary progressive multiple sclerosis. Wellcome Open Research, 2016, 1, 10.	0.9	22
88	Harnessing natural transformation inActinobacillus pleuropneumoniae: a simple method for allelic replacements. FEMS Microbiology Letters, 2004, 233, 277-281.	0.7	21
89	Reduced DNA binding and uptake in the absence of DsbA1 and DsbA2 of Neisseria meningitidis due to inefficient folding of the outer-membrane secretin PilQ. Microbiology (United Kingdom), 2008, 154, 217-225.	0.7	21
90	ICEApl1, an Integrative Conjugative Element Related to ICEHin1056, Identified in the Pig Pathogen Actinobacillus pleuropneumoniae. Frontiers in Microbiology, 2016, 7, 810.	1.5	20

#	Article	IF	CITATIONS
91	Galleria mellonella: An Infection Model for Screening Compounds Against the Mycobacterium tuberculosis Complex. Frontiers in Microbiology, 2019, 10, 2630.	1.5	20
92	Role of (p)ppGpp in Viability and Biofilm Formation of Actinobacillus pleuropneumoniae S8. PLoS ONE, 2015, 10, e0141501.	1.1	20
93	Apa is a trimeric autotransporter adhesin of <i>Actinobacillus pleuropneumoniae</i> responsible for autoagglutination and host cell adherence. Journal of Basic Microbiology, 2012, 52, 598-607.	1.8	19
94	Identification and characterization of serovar-independent immunogens in Actinobacillus pleuropneumoniae. Veterinary Research, 2017, 48, 74.	1.1	19
95	Transposon mutagenesis in Mycoplasma hyopneumoniae using a novel mariner-based system for generating random mutations. Veterinary Research, 2013, 44, 124.	1.1	18
96	"Pathotyping―Multiplex PCR Assay for Haemophilus parasuis: a Tool for Prediction of Virulence. Journal of Clinical Microbiology, 2017, 55, 2617-2628.	1.8	18
97	The SapA Protein Is Involved in Resistance to Antimicrobial Peptide PR-39 and Virulence of Actinobacillus pleuropneumoniae. Frontiers in Microbiology, 2017, 8, 811.	1.5	18
98	Characterization of the Actinobacillus pleuropneumoniae SXT-related integrative and conjugative element ICEApl2 and analysis of the encoded FloR protein: hydrophobic residues in transmembrane domains contribute dynamically to florfenicol and chloramphenicol efflux. Journal of Antimicrobial Chemotherapy, 2018, 73, 57-65.	1.3	18
99	Ultra-Short Antimicrobial Peptoids Show Propensity for Membrane Activity Against Multi-Drug Resistant Mycobacterium tuberculosis. Frontiers in Microbiology, 2020, 11, 417.	1.5	18
100	Differential gene expression profiling of Actinobacillus pleuropneumoniae during induction of primary alveolar macrophage apoptosis in piglets. Microbial Pathogenesis, 2015, 78, 74-86.	1.3	17
101	<i>Actinobacillus pleuropneumoniae</i> serovar 8 predominates in England and Wales. Veterinary Record, 2016, 179, 276-276.	0.2	16
102	Establishment and comparison of Actinobacillus pleuropneumoniae experimental infection model in mice and piglets. Microbial Pathogenesis, 2019, 128, 381-389.	1.3	16
103	Harnessing natural transformation in Actinobacillus pleuropneumoniae: a simple method for allelic replacements. FEMS Microbiology Letters, 2004, 233, 277-281.	0.7	16
104	Use of Proteins Identified through a Functional Genomic Screen To Develop a Protein Subunit Vaccine That Provides Significant Protection against Virulent Streptococcus suis in Pigs. Infection and Immunity, 2018, 86, .	1.0	16
105	Active Copper- and Zinc-Containing Superoxide Dismutase in the Cryptic Genospecies of Haemophilus Causing Urogenital and Neonatal Infections Discriminates Them from Haemophilus influenzae Sensu Stricto. Journal of Clinical Microbiology, 2002, 40, 268-270.	1.8	15
106	Meningococcal biofilm growth on an abiotic surface – a model for epithelial colonization?. Microbiology (United Kingdom), 2009, 155, 1940-1952.	0.7	15
107	Generation of a Tn5 transposon library in Haemophilus parasuis and analysis by transposon-directed insertion-site sequencing (TraDIS). Veterinary Microbiology, 2013, 166, 558-566.	0.8	15
108	Evidence of Illegitimate Recombination Between Two Pasteurellaceae Plasmids Resulting in a Novel Multi-Resistance Replicon, pM3362MDR, in Actinobacillus pleuropneumoniae. Frontiers in Microbiology, 2018, 9, 2489.	1.5	15

#	Article	IF	CITATIONS
109	Palindromic Haemophilus DNA uptake sequences in presumed transcriptional terminators from H. influenzae and H. parainfluenzae. Gene, 1992, 114, 151-152.	1.0	13
110	Bacterial superoxide dismutase and virulence. Methods in Enzymology, 2002, 349, 155-166.	0.4	13
111	Analysis of differential protein expression in Actinobacillus pleuropneumoniae by Surface Enhanced Laser Desorption Ionisation—ProteinChip™ (SELDI) technology. Veterinary Microbiology, 2004, 99, 215-225.	0.8	13
112	A computational strategy for the search of regulatory small RNAs in <i>Actinobacillus pleuropneumoniae</i> . Rna, 2016, 22, 1373-1385.	1.6	13
113	Identification of novel Haemophilus parasuis serovar 5 vaccine candidates using an immunoproteomic approach. Journal of Proteomics, 2017, 163, 111-117.	1.2	13
114	Haemophilus parasuis cytolethal distending toxin induces cell cycle arrest and p53-dependent apoptosis. PLoS ONE, 2017, 12, e0177199.	1.1	13
115	A Neisseria meningitidis NMB1966 mutant is impaired for invasion of respiratory epithelial cells, survival in human blood and for virulence in vivo. Medical Microbiology and Immunology, 2009, 198, 57-67.	2.6	12
116	Identification of proteins of Propionibacterium acnes for use as vaccine candidates to prevent infection by the pig pathogen Actinobacillus pleuropneumoniae. Vaccine, 2013, 31, 5269-5275.	1.7	12
117	Streptococcus suis serotype 2 enolase interaction with host brain microvascular endothelial cells and RPSA-induced apoptosis lead to loss of BBB integrity. Veterinary Research, 2021, 52, 30.	1.1	12
118	Studies of a potential in vitro test for estimation of toxicity of aminoglycoside antibiotics and polyamines Journal of Antibiotics, 1982, 35, 1387-1393.	1.0	11
119	recF in Actinobacillus pleuropneumoniae. Nucleic Acids Research, 1992, 20, 615-615.	6.5	11
120	Actinobacillus pleuropneumoniae serotype 1 carrying the defined aroA mutation is fully avirulent in the pig. Research in Veterinary Science, 2002, 72, 163-167.	0.9	11
121	Characterisation and genetic organisation of a 24-MDa plasmid from the Brazilian Purpuric Fever clone of Haemophilus influenzae biogroup aegyptius. Plasmid, 2002, 48, 38-48.	0.4	11
122	B cell cross-epitope of Propionibacterium acnes and Actinobacillus pleuropneumonia selected by phage display library can efficiently protect from Actinobacillus pleuropneumonia infection. Veterinary Microbiology, 2017, 205, 14-21.	0.8	11
123	Free serum haemoglobin is associated with brain atrophy in secondary progressive multiple sclerosis. Wellcome Open Research, 0, 1, 10.	0.9	11
124	Mobile Genetic Elements Drive Antimicrobial Resistance Gene Spread in Pasteurellaceae Species. Frontiers in Microbiology, 2021, 12, 773284.	1.5	11
125	<scp>pcr</scp> specific for <i>Actinobacillus pleuropneumoniae</i> serotype 3. Veterinary Record, 2008, 162, 648-652.	0.2	10
126	Population-based analysis of Actinobacillus pleuropneumoniae ApxIVA for use as a DIVA antigen. Vaccine, 2010, 28, 4871-4874.	1.7	10

8

#	Article	IF	CITATIONS
127	Innate Immune Responses of Galleria mellonella to Mycobacterium bovis BCG Challenge Identified Using Proteomic and Molecular Approaches. Frontiers in Cellular and Infection Microbiology, 2021, 11, 619981.	1.8	10

The role of the Shigella flexneri yihE gene in LPS synthesis and virulence. Microbiology (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702

129	Apa2H1, the first head domain of Apa2 trimeric autotransporter adhesin, activates mouse bone marrow-derived dendritic cells and immunization with Apa2H1 protects against Actinobacillus pleuropneumoniae infection. Molecular Immunology, 2017, 81, 108-117.	1.0	9
130	Serovar-dependent differences in Hfq-regulated phenotypes in <i>Actinobacillus pleuropneumoniae</i> . Pathogens and Disease, 2020, 78, .	0.8	9
131	Differences in pig respiratory tract and peripheral blood immune responses to Actinobacillus pleuropneumoniae. Veterinary Microbiology, 2020, 247, 108755.	0.8	9
132	A novel biosafety level 2 compliant tuberculosis infection model using a Δ <i>leuD</i> lੌ" <i>panCD</i> double auxotroph of <i>Mycobacterium tuberculosis</i> H37Rv and <i>Galleria mellonella</i> . Virulence, 2020, 11, 811-824.	1.8	9
133	Trimeric autotransporter adhesins contribute to Actinobacillus pleuropneumoniae pathogenicity in mice and regulate bacterial gene expression during interactions between bacteria and porcine primary alveolar macrophages. Antonie Van Leeuwenhoek, 2016, 109, 51-70.	0.7	8
134	JMM Profile: Actinobacillus pleuropneumoniae: a major cause of lung disease in pigs but difficult to control and eradicate. Journal of Medical Microbiology, 2022, 71, .	0.7	8
135	Growth ofHaemophilus influenzaetype b in continuous culture: Effect of dilution rate on outer-membrane protein and lipopolysaccharide expression. FEMS Microbiology Letters, 1992, 93, 43-47.	0.7	7
136	The dilution rate affects the outer membrane protein and lipopolysaccharide composition of Haemophilus influenzae type b grown under iron limitation. Journal of Bacteriology, 1993, 175, 2462-2464.	1.0	7
137	Distribution, cloning, characterisation and mutagenesis ofsodC, the gene encoding copper/zinc superoxide dismutase, a potential determinant of virulence, inHaemophilus ducreyi. FEMS Immunology and Medical Microbiology, 1997, 17, 235-242.	2.7	7
138	Genome Wide Expression Profiling Reveals Suppression of Host Defence Responses during Colonisation by Neisseria meningitides but not N. lactamica. PLoS ONE, 2011, 6, e26130.	1.1	7
139	Cross-Reactive Bactericidal Antimeningococcal Antibodies Can Be Isolated From Convalescing Invasive Meningococcal Disease Patients Using Reverse Vaccinology 2.0. Frontiers in Immunology, 2018, 9, 1621.	2.2	7
140	Use of the Invertebrate Galleria mellonella as an Infection Model to Study the Mycobacterium tuberculosis Complex. Journal of Visualized Experiments, 2019, , .	0.2	7
141	Generation and Evaluation of a Glaesserella (Haemophilus) parasuis Capsular Mutant. Infection and Immunity, 2020, 88, .	1.0	7
142	Monitoring Gene Expression Using DNA Arrays. , 2003, 71, 119-134.		6
143	Inactivation of NMBO419 , Encoding a Sel1-Like Repeat (SLR) Protein, in Neisseria meningitidis Is Associated with Differential Expression of Genes Belonging to the Fur Regulon and Reduced Intraepithelial Replication. Infection and Immunity, 2017, 85, .	1.0	6
144	A Rare Mutation in <i>SPLUNC1</i> Affects Bacterial Adherence and Invasion in Meningococcal Disease. Clinical Infectious Diseases, 2020, 70, 2045-2053.	2.9	6

#	Article	IF	CITATIONS
145	Application of the MISTEACHING(S) disease susceptibility framework to <i>Actinobacillus pleuropneumoniae</i> to identify research gaps: an exemplar of a veterinary pathogen. Animal Health Research Reviews, 2021, 22, 120-135.	1.4	6
146	Rapid Detection and Typing of Actinobacillus pleuropneumoniae Serovars Directly From Clinical Samples: Combining FTA® Card Technology With Multiplex PCR. Frontiers in Veterinary Science, 2021, 8, 728660.	0.9	6
147	Impact of Reducing Complement Inhibitor Binding on the Immunogenicity of Native Neisseria meningitidis Outer Membrane Vesicles. PLoS ONE, 2016, 11, e0148840.	1.1	6
148	A novel neisserial shuttle plasmid: A useful new tool for meningococcal research. FEMS Microbiology Letters, 2005, 251, 143-147.	0.7	5
149	Impairment of IFN-Gamma Response to Synthetic Peptides of Mycobacterium tuberculosis in a 7-Day Whole Blood Assay. PLoS ONE, 2013, 8, e71351.	1.1	5
150	Evaluation of the recombinant proteins RlpB and VacJ as a vaccine for protection against Glaesserella parasuis in pigs. BMC Veterinary Research, 2020, 16, 167.	0.7	5
151	A Promoter Probe Plasmid Based on Green Fluorescent Protein: A Strategy for Studying Meningococcal Gene Expression. , 2001, 67, 663-678.		4
152	Necrosis from needlestick injury with live Actinobacillus pleuropneumoniae porcine vaccine. BMJ: British Medical Journal, 2011, 343, d6261-d6261.	2.4	4
153	Basal-Level Effects of (p)ppGpp in the Absence of Branched-Chain Amino Acids in Actinobacillus pleuropneumoniae. Journal of Bacteriology, 2020, 202, .	1.0	4
154	Identification of sodC encoding periplasmic [Cu,Zn]-superoxide dismutase in Salmonella. , 0, .		4
155	A proteomics-based method for identifying antigens within immune complexes. PLoS ONE, 2020, 15, e0244157.	1.1	4
156	Novel DNA Markers for Identification of Actinobacillus pleuropneumoniae. Microbiology Spectrum, 2022, 10, e0131121.	1.2	4
157	A BOX-SCAR fragment for the identification ofActinobacillus pleuropneumoniae. FEMS Microbiology Letters, 2014, 352, 32-37.	0.7	3
158	An anti-Propionibacterium acnes antibody shows heterologous resistance to an Actinobacillus pleuropneumoniae infection independent of neutrophils in mice. Immunologic Research, 2017, 65, 1124-1129.	1.3	3
159	Transcriptomic analysis of porcine PBMCs in response to Actinobacillus pleuropneumoniae reveals the dynamic changes of differentially expressed genes related to immuno-inflammatory responses. Antonie Van Leeuwenhoek, 2018, 111, 2371-2384.	0.7	3
160	Identification of FtpA, a Dps-Like Protein Involved in Anti-Oxidative Stress and Virulence in Actinobacillus pleuropneumoniae. Journal of Bacteriology, 2022, 204, JB0032621.	1.0	3
161	Rapid Detection of Actinobacillus pleuropneumoniae From Clinical Samples Using Recombinase Polymerase Amplification. Frontiers in Veterinary Science, 2022, 9, 805382.	0.9	3
162	Haemophilus influenzaeMicroarrays: Virulence and Vaccines. Comparative and Functional Genomics, 2002, 3, 358-361.	2.0	2

#	Article	IF	CITATIONS
163	Draft Genome Sequences of the Type Strains of Actinobacillus indolicus (46K2C) and Actinobacillus porcinus (NM319), Two NAD-Dependent Bacterial Species Found in the Respiratory Tract of Pigs. Microbiology Resource Announcements, 2020, 9, .	0.3	2
164	Comparative Genome Sequence Analysis of Actinobacillus pleuropneumoniae Serovar 8 Isolates From Norway, Denmark, and the United Kingdom Indicates Distinct Phylogenetic Lineages and Differences in Distribution of Antimicrobial Resistance Genes. Frontiers in Microbiology, 2021, 12, 729637.	1.5	2
165	Regarding flagellar expression in clinical isolates of non-typeable Haemophilus influenzae. Journal of Medical Microbiology, 2017, 66, 1705-1705.	0.7	1
166	Isolating Pathogen-Specific Human Monoclonal Antibodies (hmAbs) Using Bacterial Whole Cells as Molecular Probes. Methods in Molecular Biology, 2021, 2183, 9-18.	0.4	1
167	Complete genome for Actinobacillus pleuropneumoniae serovar 8 reference strain 405: comparative analysis with draft genomes for different laboratory stock cultures indicates little genetic variation. Microbial Genomics, 2021, 7, .	1.0	1
168	Rationally designed mariner vectors for functional genomic analysis of Actinobacillus pleuropneumoniae and other Pasteurellaceae species by transposon-directed insertion-site sequencing (TraDIS). Animal Diseases, 2021, 1, 29.	0.6	1
169	Galleria mellonella: a novel infection model for screening potential anti-mycobacterial compounds against members of the Mycobacterium tuberculosis complex. Access Microbiology, 2019, 1, .	0.2	0
170	Bactericidal fully-human monoclonal antibodies can be cloned from patients convalescing from invasive meningococcal disease. Access Microbiology, 2019, 1, .	0.2	0