Efthimios M C Skoulakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/54434/publications.pdf

Version: 2024-02-01

68 papers 3,565 citations

201674 27 h-index 57 g-index

75 all docs

75 docs citations

75 times ranked 3623 citing authors

#	Article	IF	CITATIONS
1	Mical modulates Tau toxicity via cysteine oxidation in vivo. Acta Neuropathologica Communications, 2022, 10, 44.	5.2	8
2	Bee foraging preferences, microbiota and pathogens revealed by direct shotgun metagenomics of honey. Molecular Ecology Resources, 2022, 22, 2506-2523.	4.8	6
3	Cold Shock Disrupts Massed Training-Elicited Memory in Drosophila. International Journal of Molecular Sciences, 2022, 23, 6407.	4.1	2
4	Associative Learning Requires Neurofibromin to Modulate GABAergic Inputs to Drosophila Mushroom Bodies. Journal of Neuroscience, 2021, 41, 5274-5286.	3.6	7
5	Functional Interactions of Tau Phosphorylation Sites That Mediate Toxicity and Deficient Learning in Drosophila melanogaster. Frontiers in Molecular Neuroscience, 2020, 13, 569520.	2.9	6
6	One size does not fit all inDrosophilaolfactory habituation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20372-20372.	7.1	1
7	Altered Proteostasis in Neurodegenerative Tauopathies. Advances in Experimental Medicine and Biology, 2020, 1233, 177-194.	1.6	10
8	Modelling cell and isoform type specificity of tauopathies in Drosophila. , 2020, , 39-56.		5
9	An assessment of the translational relevance of Drosophila in drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 303-313.	5.0	17
10	Expression of Mammalian BM88/CEND1 in Drosophila Affects Nervous System Development by Interfering with Precursor Cell Formation. Neuroscience Bulletin, 2019, 35, 979-995.	2.9	2
11	Drosophila Bruton's Tyrosine Kinase Regulates Habituation Latency and Facilitation in Distinct Mushroom Body Neurons. Journal of Neuroscience, 2019, 39, 8730-8743.	3.6	5
12	<i>Drosophila</i> Tau Negatively Regulates Translation and Olfactory Long-Term Memory, But Facilitates Footshock Habituation and Cytoskeletal Homeostasis. Journal of Neuroscience, 2019, 39, 8315-8329.	3.6	23
13	Human Tau isoform-specific presynaptic deficits in a Drosophila Central Nervous System circuit. Neurobiology of Disease, 2019, 124, 311-321.	4.4	8
14	Accessing Olfactory Habituation in Drosophila melanogaster with a T-maze Paradigm. Bio-protocol, 2019, 9, e3259.	0.4	2
15	Differential effects of 14-3-3 dimers on Tau phosphorylation, stability and toxicity in vivo. Human Molecular Genetics, 2018, 27, 2244-2261.	2.9	14
16	Electron Spin Resonance (EPR) in Drosophila and General Anesthesia. Methods in Enzymology, 2018, 603, 115-128.	1.0	10
17	<i>Drosophila mef2</i> is essential for normal mushroom body and wing development. Biology Open, 2018, 7, .	1.2	16
18	The Drosophila Receptor Tyrosine Kinase Alk Constrains Long-Term Memory Formation. Journal of Neuroscience, 2018, 38, 7701-7712.	3.6	17

#	Article	IF	Citations
19	Temporally specific engagement of distinct neuronal circuits regulating olfactory habituation in Drosophila. ELife, 2018, 7, .	6.0	14
20	An aminophenothiazine inhibitor of the NCS-1/Ric8a complex regulates synaptic function in fragile X syndrome. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e38-e39.	0.1	0
21	Interference of the complex between NCS-1 and Ric8a with phenothiazines regulates synaptic function and is an approach for fragile X syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E999-E1008.	7.1	40
22	Distinct phenotypes of three-repeat and four-repeat human tau in a transgenic model of tauopathy. Neurobiology of Disease, 2017, 105, 74-83.	4.4	71
23	Drk-mediated signaling to Rho kinase is required for anesthesia-resistant memory inDrosophila. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10984-10989.	7.1	12
24	Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathologica Communications, 2017, 5, 91.	5.2	157
25	Vibrational Detection of Odorant Functional Groups by Drosophila melanogaster. ENeuro, 2017, 4, ENEURO.0049-17.2017.	1.9	7
26	Minute Impurities Contribute Significantly to Olfactory Receptor Ligand Studies: Tales from Testing the Vibration Theory. ENeuro, 2017, 4, ENEURO.0070-17.2017.	1.9	18
27	Differential Electrophysiological Responses to Odorant Isotopologues in Drosophilid Antennae. ENeuro, 2016, 3, ENEURO.0152-15.2016.	1.9	12
28	Temporally distinct phosphorylations differentiate Tau-dependent learning deficits and premature mortality in Drosophila. Human Molecular Genetics, 2015, 24, 2065-2077.	2.9	37
29	Plausibility of the vibrational theory of olfaction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3154.	7.1	25
30	Behavioral decline and premature lethality upon pan-neuronal ferritin overexpression in Drosophila infected with a virulent form of Wolbachia. Frontiers in Pharmacology, 2014, 5, 66.	3.5	22
31	Electron spin changes during general anesthesia in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3524-33.	7.1	51
32	Odor generalization according to vibrational spectra. Flavour, 2014, 3, .	2.3	0
33	Molecular Vibration-Sensing Component in Human Olfaction. PLoS ONE, 2013, 8, e55780.	2.5	78
34	Interkingdom Complementation Reveals Structural Conservation and Functional Divergence of 14-3-3 Proteins. PLoS ONE, 2013, 8, e78090.	2.5	13
35	Twice is better: highlights of the second meeting focused on tau biology and pathology. Biochemical Society Transactions, 2012, 40, 641-643.	3.4	O
36	Constitutive Activation of Ca ²⁺ /Calmodulin-Dependent Protein Kinase II during Development Impairs Central Cholinergic Transmission in a Circuit Underlying Escape Behavior in <i>Drosophila</i> . Journal of Neuroscience, 2012, 32, 170-182.	3.6	16

#	Article	IF	Citations
37	Learning and Memory Deficits Consequent to Reduction of the Fragile X Mental Retardation Protein Result from Metabotropic Glutamate Receptor-Mediated Inhibition of cAMP Signaling in <i>Drosophila</i> . Journal of Neuroscience, 2012, 32, 13111-13124.	3.6	63
38	14-3-3Îμ Is Required for Germ Cell Migration in Drosophila. PLoS ONE, 2012, 7, e36702.	2.5	12
39	Molecular vibration-sensing component in <i>Drosophila melanogaster</i> olfaction. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3797-3802.	7.1	164
40	The Power and Richness of Modelling Tauopathies in Drosophila. Molecular Neurobiology, 2011, 44, 122-133.	4.0	28
41	Ferritin overexpression in Drosophila glia leads to iron deposition in the optic lobes and late-onset behavioral defects. Neurobiology of Disease, 2011, 43, 213-219.	4.4	25
42	Reply to Hettinger: Olfaction is a physical and a chemical sense in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E350-E350.	7.1	5
43	<i>Drosophila</i> 14-3-3lµ has a crucial role in anti-microbial peptide secretion and innate immunity. Journal of Cell Science, 2011, 124, 2165-2174.	2.0	52
44	The Receptor Tyrosine Kinase Alk Controls Neurofibromin Functions in Drosophila Growth and Learning. PLoS Genetics, 2011, 7, e1002281.	3.5	90
45	Phosphorylation differentiates tau-dependent neuronal toxicity and dysfunction. Biochemical Society Transactions, 2010, 38, 981-987.	3.4	34
46	Differential Effects of Tau on the Integrity and Function of Neurons Essential for Learning in Drosophila. Journal of Neuroscience, 2010, 30, 464-477.	3.6	93
47	Dimerization Is Essential for 14-3-3ζ Stability and Function in Vivo. Journal of Biological Chemistry, 2010, 285, 1692-1700.	3.4	45
48	A Dual Role for the Adaptor Protein DRK in <i>Drosophila</i> Olfactory Learning and Memory. Journal of Neuroscience, 2009, 29, 2611-2625.	3.6	36
49	A third functional isoform enriched in mushroom body neurons is encoded by the Drosophila <i>14â€3â€3ζ</i> gene. FEBS Letters, 2009, 583, 2934-2938.	2.8	15
50	Neuralized is expressed in the $\hat{l}\pm/\hat{l}^2$ lobes of adult <i>Drosophila</i> mushroom bodies and facilitates olfactory long-term memory formation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14674-14679.	7.1	38
51	Modelling cell and isoform type specificity of tauopathies in Drosophila. SEB Experimental Biology Series, 2008, 60, 39-56.	0.1	4
52	<i>In Vivo</i> Functional Specificity and Homeostasis of Drosophila 14-3-3 Proteins. Genetics, 2007, 177, 239-253.	2.9	42
53	Protection from premature habituation requires functional mushroom bodies in Drosophila. Learning and Memory, 2007, 14, 376-384.	1.3	35
54	Homeostatic Mechanisms for Iron Storage Revealed by Genetic Manipulations and Live Imaging of Drosophila Ferritin. Genetics, 2007, 177, 89-100.	2.9	112

#	Article	IF	CITATIONS
55	Distinct neuronal circuits mediate experience-dependent, non-associative osmotactic responses in Drosophila. Molecular and Cellular Neurosciences, 2007, 34, 378-389.	2.2	25
56	Paternally and maternally transmitted GAL4 transcripts contribute to UAS transgene expression in early <i>Drosophila</i> embryos. Genesis, 2007, 45, 737-743.	1.6	4
57	Cell type-specific processing of human Tau proteins in Drosophila. FEBS Letters, 2006, 580, 4602-4606.	2.8	28
58	Towards Experimental Tests of Quantum Effects in Cytoskeletal Proteins., 2006,, 95-170.		6
59	Learning and Memory Deficits Upon TAU Accumulation in Drosophila Mushroom Body Neurons. Learning and Memory, 2004, 11, 277-287.	1.3	139
60	Drosophila mixed lineage kinase/slipper, a missing biochemical link in Drosophila JNK signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1640, 77-84.	4.1	20
61	Interaction of Akt-Phosphorylated Ataxin-1 with 14-3-3 Mediates Neurodegeneration in Spinocerebellar Ataxia Type 1. Cell, 2003, 113, 457-468.	28.9	402
62	Conditional Rescue of Olfactory Learning and Memory Defects in Mutants of the 14-3-3î¶ Gene <i>leonardo</i> . Journal of Neuroscience, 2001, 21, 8417-8425.	3.6	78
63	14-3-3 proteins in neuronal development and function. Molecular Neurobiology, 1998, 16, 269-284.	4.0	142
64	Tripartite Mushroom Body Architecture Revealed by Antigenic Markers. Learning and Memory, 1998, 5, 38-51.	1.3	356
65	Leonardo, a Drosophila 14-3-3 Protein Involved in Learning, Regulates Presynaptic Function. Neuron, 1997, 19, 391-402.	8.1	158
66	Olfactory Learning Deficits in Mutants for leonardo, a Drosophila Gene Encoding a 14-3-3 Protein. Neuron, 1996, 17, 931-944.	8.1	215
67	The cyclic AMP system and Drosophila learning. , 1995, 149-150, 271-278.		59
68	Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron, 1993, 11, 197-208.	8.1	287