Joyce Bischoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5442852/publications.pdf

Version: 2024-02-01

18436 22764 13,098 139 62 112 citations h-index g-index papers 148 148 148 12414 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Endothelial <i>GNAQ</i> p.R183Q Increases ANGPT2 (Angiopoietin-2) and Drives Formation of Enlarged Blood Vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, ATVBAHA121316651.	1.1	20
2	Non–beta blocker enantiomers of propranolol and atenolol inhibit vasculogenesis in infantile hemangioma. Journal of Clinical Investigation, 2022, 132, .	3.9	26
3	Wnt Site Signaling Inhibitor Secreted Frizzledâ∈Related Protein 3 Protects Mitral Valve Endothelium From Myocardial Infarctionâ∈"Induced Endothelialâ€ŧoâ€Mesenchymal Transition. Journal of the American Heart Association, 2022, 11, e023695.	1.6	6
4	Non- \hat{l}^2 -Blocker Enantiomers of Propranolol and Atenolol Inhibit Vasculogenesis in Infantile Hemangioma. Laryngo- Rhino- Otologie, 2022, , .	0.2	0
5	Die Vaskulogenese des infantilen HÄmangioms kann durch Propranolol und Atenolol ohne Wirkung an Betarezeptoren gehemmt werden. Laryngo- Rhino- Otologie, 2022, , .	0.2	O
6	NOGOB receptor–mediated RAS signaling pathway is a target for suppressing proliferating hemangioma. JCI Insight, 2021, 6, .	2.3	9
7	Endothelial-Mesenchymal Transition in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2357-2369.	1.1	69
8	Integration of Functional Imaging, Cytometry, and Unbiased Proteomics Reveals New Features of Endothelial-to-Mesenchymal Transition in Ischemic Mitral Valve Regurgitation in Human Patients. Frontiers in Cardiovascular Medicine, 2021, 8, 688396.	1.1	0
9	Diffuse capillary malformation with overgrowth contains somatic <i>PIK3CA</i> variants. Clinical Genetics, 2020, 97, 736-740.	1.0	22
10	Epsin-mediated degradation of IP3R1 fuels atherosclerosis. Nature Communications, 2020, 11, 3984.	5.8	24
11	Attenuated Mitral Leaflet Enlargement Contributes to Functional Mitral Regurgitation After Myocardial Infarction. Journal of the American College of Cardiology, 2020, 75, 395-405.	1.2	33
12	Isolation of Stem Cells, Endothelial Cells and Pericytes from Human Infantile Hemangioma. Bio-protocol, 2020, 10, e3487.	0.2	5
13	Endothelial-to-Mesenchymal Transition. Circulation Research, 2019, 124, 1163-1165.	2.0	129
14	A somatic missense mutation in GNAQ causes capillary malformation. Current Opinion in Hematology, 2019, 26, 179-184.	1.2	23
15	Myeloid-Specific Deletion of Epsins 1 and 2 Reduces Atherosclerosis by Preventing LRP-1 Downregulation. Circulation Research, 2019, 124, e6-e19.	2.0	41
16	Association of Somatic <i>GNAQ</i> Mutation With Capillary Malformations in a Case of Choroidal Hemangioma. JAMA Ophthalmology, 2019, 137, 91.	1.4	25
17	Mitral Valve Adaptation to IsolatedÂAnnular Dilation. JACC: Cardiovascular Imaging, 2019, 12, 665-677.	2.3	102
18	R-propranolol is a small molecule inhibitor of the SOX18 transcription factor in a rare vascular syndrome and hemangioma. ELife, 2019, 8, .	2.8	35

#	Article	IF	CITATIONS
19	Mitral Valve Adaptation. Circulation: Cardiovascular Imaging, 2018, 11, e007642.	1.3	3
20	PTEN (Phosphatase and Tensin Homolog) Connection in Hereditary Hemorrhagic Telangiectasia 2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 984-985.	1.1	2
21	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	3.7	429
22	Epsin deficiency promotes lymphangiogenesis through regulation of VEGFR3 degradation in diabetes. Journal of Clinical Investigation, 2018, 128, 4025-4043.	3.9	52
23	A somatic GNA11 mutation is associated with extremity capillary malformation and overgrowth. Angiogenesis, 2017, 20, 303-306.	3.7	97
24	Mitral Leaflet Changes Following Myocardial Infarction. Circulation: Cardiovascular Imaging, 2017, 10, .	1.3	50
25	Endothelial colony forming cells and mesenchymal progenitor cells form blood vessels and increase blood flow in ischemic muscle. Scientific Reports, 2017, 7, 770.	1.6	44
26	Somatic GNAQ Mutation is Enriched in Brain Endothelial Cells inÂSturge–Weber Syndrome. Pediatric Neurology, 2017, 67, 59-63.	1.0	54
27	Effect of Losartan on Mitral Valve Changes After Myocardial Infarction. Journal of the American College of Cardiology, 2017, 70, 1232-1244.	1.2	97
28	Endothelial Cells from Capillary Malformations Are Enriched for Somatic GNAQ Mutations. Plastic and Reconstructive Surgery, 2016, 137, 77e-82e.	0.7	87
29	Somatic Activating Mutations in GNAQ and GNA11 Are Associated with Congenital Hemangioma. American Journal of Human Genetics, 2016, 98, 789-795.	2.6	144
30	CD45 Expression in Mitral Valve Endothelial Cells After Myocardial Infarction. Circulation Research, 2016, 119, 1215-1225.	2.0	69
31	Altered ratios of pro- and anti-angiogenic VEGF-A variants and pericyte expression of DLL4 disrupt vascular maturation in infantile haemangioma. Journal of Pathology, 2016, 239, 139-151.	2.1	22
32	EGFL6 Regulates the Asymmetric Division, Maintenance, and Metastasis of ALDH+ Ovarian Cancer Cells. Cancer Research, 2016, 76, 6396-6409.	0.4	55
33	Myocardial Infarction Alters Adaptation ofÂthe Tethered Mitral Valve. Journal of the American College of Cardiology, 2016, 67, 275-287.	1.2	93
34	Endoglin regulates mural cell adhesion in the circulatory system. Cellular and Molecular Life Sciences, 2016, 73, 1715-1739.	2.4	63
35	Dual role of fatty acid-binding protein 5 on endothelial cell fate: a potential link between lipid metabolism and angiogenic responses. Angiogenesis, 2016, 19, 95-106.	3.7	37
36	3D Ultrasound: seeing is understanding—from imaging to pathophysiology to developing therapies in secondary MR. European Heart Journal Cardiovascular Imaging, 2016, 17, 510-511.	0.5	0

#	Article	IF	CITATIONS
37	Leveraging a Sturge-Weber Gene Discovery: An Agenda for FutureÂResearch. Pediatric Neurology, 2016, 58, 12-24.	1.0	19
38	The <scp>GPR</scp> 55 agonist, <scp>L</scp> â€Î±â€lysophosphatidylinositol, mediates ovarian carcinoma cellâ€induced angiogenesis. British Journal of Pharmacology, 2015, 172, 4107-4118.	2.7	29
39	Treprostinil indirectly regulates endothelial colony forming cell angiogenic properties by increasing VEGF-A produced by mesenchymal stem cells. Thrombosis and Haemostasis, 2015, 114, 735-747.	1.8	25
40	Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects. Journal of Clinical Investigation, 2015, 125, 3491-3504.	3.9	167
41	The endogenous zinc finger transcription factor, ZNF24, modulates the angiogenic potential of human microvascular endothelial cells. FASEB Journal, 2015, 29, 1371-1382.	0.2	18
42	Rapid onset of perfused blood vessels after implantation of ECFCs and MPCs in collagen, PuraMatrix and fibrin provisional matrices. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 632-636.	1.3	19
43	AKT hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a patient with lymphatic malformation. Angiogenesis, 2015, 18, 151-162.	3.7	110
44	Reciprocal interactions between mitral valve endothelial and interstitial cells reduce endothelial-to-mesenchymal transition and myofibroblastic activation. Journal of Molecular and Cellular Cardiology, 2015, 80, 175-185.	0.9	55
45	Infantile hemangioma-derived stem cells and endothelial cells are inhibited by class 3 semaphorins. Biochemical and Biophysical Research Communications, 2015, 464, 126-132.	1.0	10
46	Valvular interstitial cells suppress calcification of valvular endothelial cells. Atherosclerosis, 2015, 242, 251-260.	0.4	135
47	Mitral valve disease—morphology and mechanisms. Nature Reviews Cardiology, 2015, 12, 689-710.	6.1	281
48	Glucose Transporter 1-Positive Endothelial Cells in Infantile Hemangioma Exhibit Features of Facultative Stem Cells. Stem Cells, 2015, 33, 133-145.	1.4	58
49	Cooperation between human fibrocytes and endothelial colony-forming cells increases angiogenesis via the CXCR4 pathway. Thrombosis and Haemostasis, 2014, 112, 1002-1013.	1.8	30
50	$\hat{l}\pm 6$ -Integrin Is Required for the Adhesion and Vasculogenic Potential of Hemangioma Stem Cells. Stem Cells, 2014, 32, 684-693.	1.4	21
51	Losartan inhibits endothelial-to-mesenchymal transformation in mitral valve endothelial cells by blocking transforming growth factor- \hat{l}^2 -induced phosphorylation of ERK. Biochemical and Biophysical Research Communications, 2014, 446, 870-875.	1.0	76
52	Propranolol targets the contractility of infantile haemangiomaâ€derived pericytes. British Journal of Dermatology, 2014, 171, 1129-1137.	1.4	48
53	Endothelial PGC-1α Mediates Vascular Dysfunction in Diabetes. Cell Metabolism, 2014, 19, 246-258.	7.2	135
54	Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding. ELife, 2014, 3, e03720.	2.8	117

#	Article	IF	CITATIONS
55	Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 337-347.	1.3	64
56	miR-21 represses Pdcd4 during cardiac valvulogenesis. Development (Cambridge), 2013, 140, 2172-2180.	1.2	23
57	Pathogenesis of infantile haemangioma. British Journal of Dermatology, 2013, 169, 12-19.	1.4	131
58	Human vasculogenic cells form functional blood vessels and mitigate adverse remodeling after ischemia reperfusion injury in rats. Angiogenesis, 2013, 16, 773-784.	3.7	44
59	Pericytes From Infantile Hemangioma Display Proangiogenic Properties and Dysregulated Angiopoietin-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 501-509.	1.1	44
60	Pathogenesis of Infantile Hemangioma. , 2013, , 43-67.		4
61	Human endothelial colony forming cells and mesenchymal progenitor cells form functional blood vessels and improve rat cardiac function after ischemia/reperfusion injury. FASEB Journal, 2013, 27, 1194.9.	0.2	0
62	TARGETS OF PROPRANOLOL IN INFANTILE HEMANGIOMA. FASEB Journal, 2013, 27, lb477.	0.2	0
63	Propranolol treatment of infantile hemangioma endothelial cells: A molecular analysis. Experimental and Therapeutic Medicine, 2012, 4, 594-604.	0.8	69
64	E-Selectin Mediates Stem Cell Adhesion and Formation of Blood Vessels in a Murine Model of Infantile Hemangioma. American Journal of Pathology, 2012, 181, 2239-2247.	1.9	27
65	VEGFR-1 Mediates Endothelial Differentiation and Formation of Blood Vessels in a Murine Model of Infantile Hemangioma. American Journal of Pathology, 2011, 179, 2266-2277.	1.9	72
66	Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19943-19948.	3.3	145
67	Mitral Valve Endothelial Cells With Osteogenic Differentiation Potential. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 598-607.	1.1	117
68	Increased Endothelial Progenitor Cells and Vasculogenic Factors in Higher-Staged Arteriovenous Malformations. Plastic and Reconstructive Surgery, 2011, 128, 260e-269e.	0.7	36
69	Bioengineered human vascular networks transplanted into secondary mice reconnect with the host vasculature and re-establish perfusion. Blood, 2011, 118, 6718-6721.	0.6	64
70	Progenitor Cells Confer Plasticity to Cardiac Valve Endothelium. Journal of Cardiovascular Translational Research, 2011, 4, 710-719.	1.1	67
71	Expression of HES and HEY genes in infantile hemangiomas. Vascular Cell, 2011, 3, 19.	0.2	22
72	Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e74-e86.	1.3	114

#	Article	IF	CITATIONS
73	Rapamycin Suppresses Self-Renewal and Vasculogenic Potential of Stem Cells Isolated from Infantile Hemangioma. Journal of Investigative Dermatology, 2011, 131, 2467-2476.	0.3	89
74	JAGGED1 Signaling Regulates Hemangioma Stem Cell–to–Pericyte/Vascular Smooth Muscle Cell Differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2181-2192.	1.1	76
75	Infantile HemangiomaMechanism(s) of Drug Action on a Vascular Tumor. Cold Spring Harbor Perspectives in Medicine, 2011, 1, a006460-a006460.	2.9	78
76	A switch in Notch gene expression parallels stem cell to endothelial transition in infantile hemangioma. Angiogenesis, 2010, 13, 15-23.	3.7	52
77	Targeting NF- \hat{I}^{0} B in infantile hemangioma-derived stem cells reduces VEGF-A expression. Angiogenesis, 2010, 13, 327-335.	3.7	63
78	Differential functions of genes regulated by VEGF–NFATc1 signaling pathway in the migration of pulmonary valve endothelial cells. FEBS Letters, 2010, 584, 141-146.	1.3	19
79	Host Myeloid Cells Are Necessary for Creating Bioengineered Human Vascular Networks <i>In Vivo</i> . Tissue Engineering - Part A, 2010, 16, 2457-2466.	1.6	63
80	Intravital Molecular Imaging of Small-Diameter Tissue-Engineered Vascular Grafts in Mice: A Feasibility Study. Tissue Engineering - Part C: Methods, 2010, 16, 597-607.	1.1	35
81	Endothelial Progenitor Cells as a Sole Source for <i>Ex Vivo</i> Seeding of Tissue-Engineered Heart Valves. Tissue Engineering - Part A, 2010, 16, 257-267.	1.6	72
82	Corticosteroid Suppression of VEGF-A in Infantile Hemangioma-Derived Stem Cells. New England Journal of Medicine, 2010, 362, 1005-1013.	13.9	238
83	Endothelial Progenitor Cells for Tissue Engineering and Tissue Regeneration. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 45-54.	0.5	0
84	Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB Journal, 2009, 23, 3865-3873.	0.2	253
85	Active Adaptation of the Tethered Mitral Valve. Circulation, 2009, 120, 334-342.	1.6	273
86	Vasculogenesis in infantile hemangioma. Angiogenesis, 2009, 12, 197-207.	3.7	164
87	Progenitor Cells in Infantile Hemangioma. Journal of Craniofacial Surgery, 2009, 20, 695-697.	0.3	50
88	In memoriam Dr. Judah Folkman. Angiogenesis, 2008, 11, 1-2.	3.7	3
89	Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nature Medicine, 2008, 14, 1236-1246.	15.2	325
90	Calcification of Multipotent Prostate Tumor Endothelium. Cancer Cell, 2008, 14, 201-211.	7.7	114

#	Article	IF	CITATIONS
91	Stem Cell–Derived, Tissue-Engineered Pulmonary Artery Augmentation Patches In Vivo. Annals of Thoracic Surgery, 2008, 86, 132-141.	0.7	16
92	Opposing actions of Notch1 and VEGF in post-natal cardiac valve endothelial cells. Biochemical and Biophysical Research Communications, 2008, 374, 512-516.	1.0	43
93	Engineering Robust and Functional Vascular Networks In Vivo With Human Adult and Cord Blood–Derived Progenitor Cells. Circulation Research, 2008, 103, 194-202.	2.0	449
94	IGF-2 and FLT-1/VEGF-R1 mRNA Levels Reveal Distinctions and Similarities Between Congenital and Common Infantile Hemangioma. Pediatric Research, 2008, 63, 263-267.	1,1	56
95	Chapter 13 An In Vivo Experimental Model for Postnatal Vasculogenesis. Methods in Enzymology, 2008, 445, 303-329.	0.4	36
96	Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. Journal of Clinical Investigation, 2008, 118, 2592-9.	3.9	224
97	In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood, 2007, 109, 4761-4768.	0.6	447
98	Hemogenic Endothelial Progenitor Cells Isolated from Human Umbilical Cord Blood. Stem Cells, 2007, 25, 2770-2776.	1.4	39
99	Engineering of Blood Vessels from Acellular Collagen Matrices Coated with Human Endothelial Cells. Tissue Engineering, 2006, 12, 2355-2365.	4.9	157
100	Endothelial progenitor cells from infantile hemangioma and umbilical cord blood display unique cellular responses to endostatin. Blood, 2006, 108, 915-921.	0.6	110
101	Mesenchymal Stem Cells and Adipogenesis in Hemangioma Involution. Stem Cells, 2006, 24, 1605-1612.	1.4	122
102	Vascular endothelial growth factor receptor signaling is required for cardiac valve formation in zebrafish. Developmental Dynamics, 2006, 235, 29-37.	0.8	42
103	Human Pulmonary Valve Progenitor Cells Exhibit Endothelial/Mesenchymal Plasticity in Response to Vascular Endothelial Growth Factor-A and Transforming Growth Factor-Î ² 2. Circulation Research, 2006, 99, 861-869.	2.0	134
104	Engineering of Blood Vessels from Acellular Collagen Matrices Coated with Human Endothelial Cells. Tissue Engineering, 2006, .	4.9	0
105	Genomic Imprinting of IGF2 Is Maintained in Infantile Hemangioma despite its High Level of Expression. Molecular Medicine, 2004, 10, 117-123.	1.9	25
106	E-selectin is required for the antiangiogenic activity of endostatin. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8005-8010.	3.3	78
107	Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H480-H487.	1.5	195
108	TISSUE-ENGINEERED MICROVESSELS ON THREE-DIMENSIONAL BIODEGRADABLE POLYMER SCAFFOLDS USING HUMAN ENDOTHELIAL PROGENITOR CELLS. Cardiovascular Pathology, 2004, 13, 10-11.	0.7	0

#	Article	IF	Citations
109	Endothelial progenitor cells in infantile hemangioma. Blood, 2004, 103, 1373-1375.	0.6	180
110	Heart Valve Development. Circulation Research, 2004, 95, 459-470.	2.0	575
111	Differential expression of CD146 in tissues and endothelial cells derived from infantile haemangioma and normal human skin. Journal of Pathology, 2003, 201, 296-302.	2.1	93
112	Quantitative Evaluation of Endothelial Progenitors and Cardiac Valve Endothelial Cells: Proliferation and Differentiation on Poly-glycolic acid/Poly-4-hydroxybutyrate Scaffold in Response to Vascular Endothelial Growth Factor and Transforming Growth Factor Î ² 1. Tissue Engineering, 2003, 9, 487-493.	4.9	72
113	Bone marrow as a cell source for tissue engineering heart valves. Annals of Thoracic Surgery, 2003, 75, 761-767.	0.7	112
114	NFATc1 Mediates Vascular Endothelial Growth Factor-induced Proliferation of Human Pulmonary Valve Endothelial Cells. Journal of Biological Chemistry, 2003, 278, 1686-1692.	1.6	99
115	Human pulmonary valve endothelial cells express functional adhesion molecules for leukocytes. Journal of Heart Valve Disease, 2003, 12, 617-24.	0.5	11
116	AC133-2, a Novel Isoform of Human AC133 Stem Cell Antigen. Journal of Biological Chemistry, 2002, 277, 20711-20716.	1.6	142
117	Monoclonal Expansion of Endothelial Cells in Hemangioma An Intrinsic Defect with Extrinsic Consequences?. Trends in Cardiovascular Medicine, 2002, 12, 220-224.	2.3	28
118	Aortic Valve Endothelial Cells Undergo Transforming Growth Factor- \hat{l}^2 -Mediated and Non-Transforming Growth Factor- \hat{l}^2 -Mediated Transdifferentiation in Vitro. American Journal of Pathology, 2001, 159, 1335-1343.	1.9	187
119	Increased Tie2 Expression, Enhanced Response to Angiopoietin-1, and Dysregulated Angiopoietin-2 Expression in Hemangioma-Derived Endothelial Cells. American Journal of Pathology, 2001, 159, 2271-2280.	1.9	145
120	Heparan sulfate and chondroitin sulfate proteoglycans inhibit E-selectin binding to endothelial cells. Journal of Cellular Biochemistry, 2001, 80, 522-531.	1.2	33
121	Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nature Medicine, 2001, 7, 1035-1040.	15.2	784
122	Clonality and altered behavior of endothelial cells from hemangiomas. Journal of Clinical Investigation, 2001, 107, 745-752.	3.9	262
123	Noninflammatory Expression of E-Selectin Is Regulated by Cell Growth. Blood, 1999, 93, 3785-3791.	0.6	20
124	Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nature Medicine, 1999, 5, 1390-1395.	15.2	522
125	Noninflammatory Expression of E-Selectin Is Regulated by Cell Growth. Blood, 1999, 93, 3785-3791.	0.6	5
126	Increased Apoptosis Coincides with Onset of Involution in Infantile Hemangioma. Microcirculation, 1998, 5, 189-195.	1.0	145

#	Article	IF	CITATIONS
127	A simplified method for growth of human microvascular endothelial cells results in decreased senescence and continued responsiveness to cytokines and growth factors. In Vitro Cellular and Developmental Biology - Animal, 1998, 34, 308-315.	0.7	62
128	Angiostatin Upregulates E-Selectin in Proliferating Endothelial Cells. Biochemical and Biophysical Research Communications, 1998, 245, 906-911.	1.0	33
129	Eâ€Selectin Is Upregulated in Proliferating Endothelial Cells <i>In Vitro</i> . Microcirculation, 1997, 4, 279-287.	1.0	47
130	Hypoxia enhances inflammatory regulation of E-selectin through a cAMP-dependent pathway. Journal of the American College of Cardiology, 1996, 27, 411.	1.2	0
131	The Angiogenesis Inhibitor AGM-1470 Selectively Increases E-Selectin. Biochemical and Biophysical Research Communications, 1996, 225, 141-145.	1.0	24
132	Hypoxia enhances stimulus-dependent induction of E-selectin on aortic endothelial cells Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7075-7080.	3.3	52
133	Approaches to studying cell adhesion molecules in angiogenesis. Trends in Cell Biology, 1995, 5, 69-74.	3.6	119
134	Regulation of P-Selectin by Tumor Necrosis Factor- $\hat{l}\pm$. Biochemical and Biophysical Research Communications, 1995, 210, 174-180.	1.0	37
135	Functions of E-selectin Trends in Glycoscience and Glycotechnology, 1994, 6, 351-365.	0.0	3
136	A role for sialyl Lewis-X/A glycoconjugates in capillary morphogenesis. Nature, 1993, 365, 267-269.	13.7	217
137	The H1 and H2 polypeptides associate to form the asialoglycoprotein receptor in human hepatoma cells Journal of Cell Biology, 1988, 106, 1067-1074.	2.3	70
138	The effect of 1-deoxymannojirimycin on rat liver \hat{l} ±-mannosidases. Biochemical and Biophysical Research Communications, 1984, 125, 324-331.	1.0	133
139	Genomic landscape of lymphatic malformations: a case series and response to the PI3K \hat{l} ± inhibitor alpelisib in an N-of-1 clinical trial. ELife, 0, 11, .	2.8	8