Luis Lartundo-Rojas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5442694/publications.pdf

Version: 2024-02-01

99 papers

2,255 citations

201674

27

h-index

276875 41 g-index

99 all docs 99 docs citations 99 times ranked 3517 citing authors

#	Article	IF	CITATIONS
1	Novelty g-C3N4/HAp composite as highly effective photocatalyst for Cr (VI) photoreduction. Catalysis Today, 2022, 388-389, 168-175.	4.4	16
2	On a CVD-formed carbon nitrogen (C ₃ N) film doped with Cu and Zn. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 306-313.	2.1	2
3	Photo-electrochemical and ozonation process to degrade ciprofloxacin in synthetic municipal wastewater, using C, N-codoped TiO2 with high visible-light absorption. Journal of Environmental Chemical Engineering, 2022, 10, 107380.	6.7	18
4	Photocatalytic behavior for the phenol degradation of ZnAl layered double hydroxide functionalized with SDS. Journal of Environmental Management, 2021, 277, 111399.	7.8	16
5	Hydroisomerization of n-hexane over Pt/WOx-ZrO2-TiO2 catalysts. Catalysis Today, 2021, 360, 12-19.	4.4	4
6	One-step synthesis and photocatalytic behavior for H2 production from water of ZnS/MoS2 composite material. Catalysis Today, 2021, 360, 99-105.	4.4	26
7	Synthesis, characterization, and temperature-dependent electronic properties of ZnO nanorods using CBD techniques. Journal of Materials Science: Materials in Electronics, 2021, 32, 8944-8957.	2.2	6
8	Enhanced photocatalytic H2 production over g-C3N4/NiS hybrid photocatalyst. Materials Letters, 2021, 290, 129476.	2.6	13
9	Enhanced performance of urea electro-oxidation in alkaline media on PtPdNi/C, PtNi/C, and Ni/C catalysts synthesized by one-pot reaction from organometallic precursors. International Journal of Hydrogen Energy, 2021, 46, 21419-21432.	7.1	15
10	Photocatalytic membrane reactor based on Mexican Natural Zeolite: RB5 dye removal by photo-Fenton process. Journal of Environmental Chemical Engineering, 2021, 9, 105281.	6.7	14
11	Application of the Heat Balance Integral Method to the growth kinetics of nickel boride layers on an Inconel 718 superalloy. Surface and Coatings Technology, 2021, 420, 127355.	4.8	18
12	Effect of emulsification techniques on the distribution of components on the surface of microparticles obtained by spray drying. Food and Bioproducts Processing, 2021, 129, 115-123.	3. 6	4
13	Hydrous cobalt–iridium oxide two-dimensional nanoframes: insights into activity and stability of bimetallic acidic oxygen evolution electrocatalysts. Nanoscale Advances, 2021, 3, 1976-1996.	4.6	14
14	Effect of trimesic acid as chelating agent in sulfided CoMoP/ \hat{I}^3 -Al2O3 catalyst for hydrodesulfurization of straight-run gas oil. Catalysis Today, 2020, 349, 244-255.	4.4	10
15	Pulse-Plating Electrodeposition of Metallic Bi in an Organic-Free Aqueous Electrolyte and Its Conversion into BiVO ₄ To Improve Photoelectrochemical Activity toward Pollutant Degradation under Visible Light. Journal of Physical Chemistry C, 2020, 124, 1421-1428.	3.1	10
16	Visible Emission on Nanostructured CeO 2 Thin Films Obtained by Spray Pyrolysis. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000235.	1.8	1
17	Ternary g-C3N4/NiOOH/Ag nanocomposite photocatalyst with efficient charges separation and high activity for H2 production. Fuel, 2020, 280, 118672.	6.4	12
18	The induced effect of chemical and photo-assisted deposition of molybdenum sulfide on carbon towards the hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2020, 874, 114459.	3.8	1

#	Article	IF	CITATIONS
19	Mechanistic Aspects on the Electrografting of Carbon Surfaces by Oxidation of Carboxylates Bearing Unsaturated Groups. ChemElectroChem, 2020, 7, 4431-4439.	3.4	4
20	Effect of Pd and Cu co-catalyst on the charge carrier trapping, recombination and transfer during photocatalytic hydrogen evolution over WO3–TiO2 heterojunction. Journal of Materials Science, 2020, 55, 16641-16658.	3.7	14
21	On the Corrosion Mechanism of Borided X12CrNiMoV12-3 Steel Immersed in a Neutral Aqueous Solution Containing Chloride and Sulfate Ions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 4868-4879.	2.2	9
22	Annealing impact on emission and phase varying of Nd-doped Si-rich-HfO2 films prepared by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2020, 31, 4587-4594.	2.2	10
23	Degradation study of arsenic oxides under XPS measurements. Applied Surface Science, 2020, 511, 145606.	6.1	52
24	Electrochemical reduction of NOx species at the interface of nanostructured Pd and PdCu catalysts in alkaline conditions. Applied Catalysis B: Environmental, 2019, 259, 118048.	20.2	59
25	Synthesis and Characterization of the All Solid Z-Scheme Bi2WO6/Ag/AgBr for the Photocatalytic Degradation of Ciprofloxacin in Water. Topics in Catalysis, 2019, 62, 1011-1025.	2.8	16
26	Pd and Pd@PdO core–shell nanoparticles supported on Vulcan carbon XC-72R: comparison of electroactivity for methanol electro-oxidation reaction. Journal of Materials Science, 2019, 54, 13694-13714.	3.7	32
27	Sol–gel synthesis and characterization of calcium-deficient hydroxyapatite photocatalysts suitable for hydrogen production: influence of the drip rate in the photocatalytic activity. SN Applied Sciences, 2019, 1, 1.	2.9	2
28	XPS and EIS studies to account for the passive behavior of the alloy Ti-6Al-4V in Hank's solution. Journal of Solid State Electrochemistry, 2019, 23, 3187-3196.	2.5	23
29	Study of corrosion behavior of API 5L X52 steel in sulfuric acid in the presence of ionic liquid 1-ethyl 3-methylimidazolium thiocyanate as corrosion inhibitor. Journal of Molecular Liquids, 2019, 289, 111106.	4.9	63
30	Hydrothermal synthesis of a twoâ€dimensional gâ€C ₃ N ₄ /MoS ₂ /MnOOH composite material and its potential application as photocatalyst. Journal of Chemical Technology and Biotechnology, 2019, 94, 3447-3456.	3.2	11
31	Contribution to the coordination chemistry of transition metal nitroprussides: a cryo-XPS study. New Journal of Chemistry, 2019, 43, 4835-4848.	2.8	62
32	Synthesis of novel hard mesoporous carbons and their applications as anodes for Li and Na ion batteries. Carbon, 2019, 147, 214-226.	10.3	41
33	In situ reactivation of spent NiMoP/ \hat{I}^3 -Al2O3 catalyst for hydrodesulfurization of straight-run gas oil. Catalysis Today, 2019, 329, 44-52.	4.4	6
34	Photo-Fenton Degradation of RB5 Dye in Aqueous Solution Using Fe Supported on Mexican Natural Zeolite. International Journal of Photoenergy, 2019, 2019, 1-15.	2 . 5	5
35	Ultrasonic spray pyrolyzed copper oxide and copper-aluminum oxide thin films: optical, structural and electronic properties. Materials Research Express, 2019, 6, 026424.	1.6	5
36	Comparison of the activities of C2N and BCNO towards Congo red degradation. Materials Chemistry and Physics, 2019, 221, 397-408.	4.0	13

#	Article	IF	CITATIONS
37	Methanol electro-oxidation reaction at the interface of (bi)-metallic (PtNi) synthesized nanoparticles supported on carbon Vulcan. International Journal of Hydrogen Energy, 2018, 43, 6117-6130.	7.1	36
38	Chemical components distribution and morphology of microcapsules of paprika oleoresin by microscopy and spectroscopy. Food Hydrocolloids, 2018, 81, 6-14.	10.7	27
39	Effect of Metal Substrate on Photo(electro)catalytic Activity of B-Doped Graphene Modified TiO2 Thin Films: Role of Iron Oxide Nanoparticles at Grain Boundaries of TiO2. Journal of Physical Chemistry C, 2018, 122, 297-306.	3.1	18
40	Iron Electrodeposition from Fe(II) Ions Dissolved in a Choline Chloride: Urea Eutectic Mixture. Journal of the Electrochemical Society, 2018, 165, D808-D812.	2.9	17
41	Corrosion Evaluation of Pipeline Steel API 5L X52 in partially deaerated Produced Water with High Chloride Content. International Journal of Electrochemical Science, 2018, 13, 7949-7967.	1.3	9
42	Bifunctional electrocatalysts for oxygen reduction/evolution reactions derived from NiCoFe LDH materials. Journal of Applied Electrochemistry, 2018, 48, 947-957.	2.9	15
43	Changes in biooxidation mechanism and transient biofilm characteristics by As(V) during arsenopyrite colonization with <i>Acidithiobacillus thiooxidans</i> Biotechnology, 2018, 45, 669-680.	3.0	6
44	The Influence of Ni(II) and Co(II) Adsorptions in the Anomalous Behavior of Co-Ni Alloys: Density Functional Theory and Experimental Studies. ChemistrySelect, 2017, 2, 1826-1834.	1.5	7
45	SnO ₂ -TiO ₂ structures and the effect of CuO, CoO metal oxide on photocatalytic hydrogen production. Journal of Chemical Technology and Biotechnology, 2017, 92, 1531-1539.	3.2	47
46	Methanol Electro-Oxidation on Pt–Carbon Vulcan Catalyst Modified with WO _{<i>x</i>} Nanostructures: An Approach to the Reaction Sequence Using DEMS. Industrial & DEMS. Indust	3.7	14
47	Characterization of Tb-doped hydroxyapatite for biomedical applications: optical properties and energy band gap determination. Journal of Materials Science, 2017, 52, 9990-10000.	3.7	47
48	Nitrogen-carbon graphite-like semiconductor synthesized from uric acid. Carbon, 2017, 121, 368-379.	10.3	23
49	Reversible photochromic effect in the TiO2—polymer hybrid system. Journal of Sol-Gel Science and Technology, 2017, 82, 51-58.	2.4	9
50	Photo-electrochemical and interfacial-process analysis of WO 3 nanostructures supported on TiO 2: An approach to BPA oxidation. Materials Science in Semiconductor Processing, 2017, 72, 115-121.	4.0	5
51	On site formation of N-doped carbon nanofibers, an efficient electrocatalyst for fuel cell applications. International Journal of Hydrogen Energy, 2017, 42, 30339-30348.	7.1	16
52	Photocatalytic activity of a new composite material of Fe (III) oxide nanoparticles wrapped by a matrix of polymeric carbon nitride and amorphous carbon. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 630-636.	2.1	12
53	Inhibition Effects of a Quaternary Ammonium-Based Ionic Liquid on Steel in Acid Solution: Electrochemical and Surface Analyses. International Journal of Electrochemical Science, 2016, 11, 7785-7800.	1.3	4
54	Effect of Chitosan on the Performance of NiMoP-Supported Catalysts for the Hydrodesulfurization of Dibenzothiophene. Journal of Nanomaterials, 2016, 2016, 1-13.	2.7	9

#	Article	IF	Citations
55	Directing photocatalytic and photoelectrocatalytic performance of TiO2 by using TEA and NH4F as doping precursors. Journal of Sol-Gel Science and Technology, 2016, 80, 462-473.	2.4	6
56	Approximations to defect chemistry in Bi4Ti3O12. Functional Materials Letters, 2016, 09, 1642006.	1.2	2
57	Nanotubes with anatase nanoparticulate walls obtained from NH ₄ TiOF ₃ nanotubes prepared by anodizing Ti. RSC Advances, 2016, 6, 41637-41643.	3.6	8
58	Copper complexes within the supramolecular solid structure of cyanuric acid and melamine. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 688-697.	2.1	5
59	Versailles Project on Advanced Materials and Standards Interlaboratory Study on Measuring the Thickness and Chemistry of Nanoparticle Coatings Using XPS and LEIS. Journal of Physical Chemistry C, 2016, 120, 24070-24079.	3.1	33
60	Y-OH-decorated-Pt/C electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 23318-23328.	7.1	14
61	Hydrothermal synthesis of unsupported MoS2 as catalyst for hydrodesulfurization of gas oil. Petroleum Science and Technology, 2016, 34, 1720-1725.	1.5	1
62	Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions. Applied Surface Science, 2016, 386, 160-177.	6.1	35
63	Synthesis and characterization of Cu-doped polymeric carbon nitride. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 171-180.	2.1	14
64	Transparent and low surface roughness HfO2: Tb3+, Eu3+ luminescent thin films deposited by USP technique. Ceramics International, 2016, 42, 2446-2455.	4.8	19
65	Photodegradation of phenol using reconstructed Ce doped Zn/Al layered double hydroxides as photocatalysts. Catalysis Today, 2016, 271, 213-219.	4.4	56
66	Preparation, characterization and electronic properties of fluorine-doped tin oxide films. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 48-51.	1.0	6
67	Enhancing the H2 evolution from water–methanol solution using Mn2+–Mn+3–Mn4+ redox species of Mn-doped TiO2 sol–gel photocatalysts. Catalysis Today, 2016, 266, 9-16.	4.4	65
68	Synthesis of 1,2-propanediol through glycerol hydrogenolysis on Cu–Al mixed oxides. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116, 205-222.	1.7	14
69	Electrochemical Dechlorination of 2-Chlorophenol on Pd/Ti, Ni/Ti and Pd-Ni Alloy/Ti Electrodes. Journal of the Electrochemical Society, 2015, 162, E223-E230.	2.9	26
70	Microstructural properties and distribution of components in microparticles obtained by spray-drying. Journal of Food Engineering, 2015, 152, 105-112.	5.2	51
71	Characterization of anodic deposits formed on Pb–Ag electrodes during electrolysis in mimic zinc electrowinning solutions with different concentrations of Mn(II). Hydrometallurgy, 2015, 156, 53-62.	4.3	32
72	Efficient mineralization of benzoic and phthalic acids in water by catalytic ozonation using a nickel oxide catalyst. New Journal of Chemistry, 2015, 39, 7839-7848.	2.8	18

#	Article	IF	Citations
73	Experimental and Theoretical Analysis Accounting for Differences of Pyrite and Chalcopyrite Oxidative Behaviors for Prospective Environmental and Bioleaching Applications. Journal of Physical Chemistry C, 2015, 119, 18364-18379.	3.1	28
74	Challenges of modelling real nanoparticles: Ni@Pt electrocatalysts for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2015, 17, 28286-28297.	2.8	30
75	The effect of titania precursors and ceria loadings on textural and chemical properties of TiO2–CeO2 and Pt–Rh/TiO2–CeO2. Journal of Sol-Gel Science and Technology, 2015, 74, 707-717.	2.4	3
76	Supramolecular intermediates in the synthesis of polymeric carbon nitride from melamine cyanurate. Journal of Solid State Chemistry, 2015, 226, 170-178.	2.9	29
77	The role of the WO3 nanostructures in the oxygen reduction reaction and PEM fuel cell performance on WO3–Pt/C electrocatalysts. International Journal of Hydrogen Energy, 2015, 40, 17371-17379.	7.1	43
78	Corrosion behavior of AISI 316L borided and non-borided steels immersed in a simulated body fluid solution. Surface and Coatings Technology, 2015, 280, 384-395.	4.8	27
79	Preparation and characterization of Sb2O5-doped Ti/RuO2-ZrO2 for dye decolorization by means of active chlorine. Journal of Solid State Electrochemistry, 2014, 18, 3153-3162.	2.5	18
80	Sorption of Gold by Naked and Thiol-Capped Magnetite Nanoparticles: An XPS Approach. Journal of Physical Chemistry C, 2014, 118, 2776-2791.	3.1	75
81	Preparation of Cu–mordenite by ionic exchange reaction under milling: A favorable route to form the mono-(μ-oxo) dicopper active species. Microporous and Mesoporous Materials, 2014, 185, 113-120.	4.4	32
82	Study of acid–base properties of supported heteropoly acids in the reactions of secondary alcohols dehydration. Catalysis Today, 2014, 220-222, 32-38.	4.4	20
83	Effect of pH on the Barrier Layer of TiO2Nanoporous Films Potentiostatically Grown in Aqueous Media Containing Fluoride Ions. Journal of the Electrochemical Society, 2013, 160, C291-C297.	2.9	10
84	Photocatalytic degradation of 2,4-dichlorophenol with MgAlTi mixed oxides catalysts obtained from layered double hydroxides. Journal of Hazardous Materials, 2013, 263, 67-72.	12.4	45
85	Effect of water and fluoride content on morphology and barrier layer properties of TiO2 nanotubes grown in ethylene glycol-based electrolytes. Journal of Solid State Electrochemistry, 2013, 17, 2939-2947.	2.5	37
86	Composite material for supercapacitors formed by polymerization of aniline in the presence of graphene oxide nanosheets. Journal of Power Sources, 2013, 224, 195-201.	7.8	43
87	Reactivity of NiO for 2,4-D degradation with ozone: XPS studies. Journal of Hazardous Materials, 2013, 262, 472-481.	12.4	73
88	Hydration and Structural Transformations during Titanium Anodization under Alkaline Conditions. ECS Transactions, 2013, 50, 21-32.	0.5	4
89	Ti Anodization in Alkaline Electrolyte: The Relationship between Transport of Defects, Film Hydration and Composition. Journal of the Electrochemical Society, 2013, 160, C277-C284.	2.9	42
90	Understanding the Surface State and Proton Adsorption Phenomena on Ni-based Alloys at the Hydrogen Evolution Zone in Alkaline Medium by EIS-XPS. Journal of New Materials for Electrochemical Systems, 2013, 16, 183-188.	0.6	4

#	Article	IF	CITATIONS
91	Structural modifications in Au/Al2O3–CeO2 mixed oxides as a function of Ce4+ content and its effects in the mineralization of the herbicide diuron. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 243, 23-32.	3.9	15
92	Sulfonic groups anchored on mesoporous carbon Starbons-300 and its use for the esterification of oleic acid. Fuel, 2012, 100, 128-138.	6.4	103
93	High-throughput study of the iron promotional effect over Pt/WOx–ZrO2 catalysts on the skeletal isomerization of n-hexane. Applied Catalysis A: General, 2012, 431-432, 69-78.	4.3	16
94	Comprehending the Thermal Decomposition and Reconstruction Process of Solâ^Gel MgAl Layered Double Hydroxides. Journal of Physical Chemistry C, 2010, 114, 2089-2099.	3.1	81
95	Characterization of the Corrosion Layers Electrochemically Formed on the Lead–Silver/H[sub 2]SO[sub 4]+Mn(II) Interface. Journal of the Electrochemical Society, 2009, 156, C231.	2.9	8
96	Physicochemical Study of Nanocapsular Layered Double Hydroxides Evolution. Journal of Physical Chemistry C, 2009, 113, 5547-5555.	3.1	25
97	Influence of bovine serum albumin in sulphuric acid aqueous solution on the corrosion and the passivation of an iron–chromium alloy. Electrochimica Acta, 2006, 51, 1550-1557.	5.2	51
98	Amorphous–crystalline transition studied in hydrated MoO3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 135, 88-94.	3.5	40
99	BSA adsorption on Fe-17Cr in acid solution: electrochemical behaviour and surface composition. , 2006, , 357-363.		0