Carol A Tamminga

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5442534/carol-a-tamminga-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

146
papers5,796
citations41
h-index73
g-index154
ext. papers7,645
ext. citations6.6
avg, IF5.83
L-index

#	Paper	IF	Citations
146	Assessing Striatal Dopamine in Schizophrenia <i>Biological Psychiatry</i> , 2022 , 91, 170-172	7.9	1
145	Desmosterol and 7-dehydrocholesterol concentrations in post mortem brains of depressed people: The role of trazodone <i>Translational Psychiatry</i> , 2022 , 12, 139	8.6	О
144	Chromatin profiling in human neurons reveals aberrant roles for histone acetylation and BET family proteins in schizophrenia <i>Nature Communications</i> , 2022 , 13, 2195	17.4	3
143	Cooperative synaptic and intrinsic plasticity in a disynaptic limbic circuit drive stress-induced anhedonia and passive coping in mice. <i>Molecular Psychiatry</i> , 2021 , 26, 1860-1879	15.1	12
142	Hippocampal subfield transcriptome analysis in schizophrenia psychosis. <i>Molecular Psychiatry</i> , 2021 , 26, 2577-2589	15.1	11
141	GWAS significance thresholds for deep phenotyping studies can depend upon minor allele frequencies and sample size. <i>Molecular Psychiatry</i> , 2021 , 26, 2048-2055	15.1	7
140	Confirmatory Efficacy and Safety Trial of Magnetic Seizure Therapy for Depression (CREST-MST): protocol for identification of novel biomarkers via neurophysiology <i>Trials</i> , 2021 , 22, 906	2.8	
139	Confirmatory Efficacy and Safety Trial of Magnetic Seizure Therapy for Depression (CREST-MST): study protocol for a randomized non-inferiority trial of magnetic seizure therapy versus electroconvulsive therapy. <i>Trials</i> , 2021 , 22, 786	2.8	1
138	Autism BrainNet: A Collaboration Between Medical Examiners, Pathologists, Researchers, and Families to Advance the Understanding and Treatment of Autism Spectrum Disorder. <i>Archives of Pathology and Laboratory Medicine</i> , 2021 , 145, 494-501	5	1
137	Multivariate relationships between peripheral inflammatory marker subtypes and cognitive and brain structural measures in psychosis. <i>Molecular Psychiatry</i> , 2021 , 26, 3430-3443	15.1	18
136	Gene-expression correlates of the oscillatory signatures supporting human episodic memory encoding. <i>Nature Neuroscience</i> , 2021 , 24, 554-564	25.5	2
135	Reduced white matter microstructure in bipolar disorder with and without psychosis. <i>Bipolar Disorders</i> , 2021 ,	3.8	2
134	Neural Processing of Repeated Emotional Scenes in Schizophrenia, Schizoaffective Disorder, and Bipolar Disorder. <i>Schizophrenia Bulletin</i> , 2021 , 47, 1473-1481	1.3	O
133	Setting Measurement-Based Care in Motion: Practical Lessons in the Implementation and Integration of Measurement-Based Care in Psychiatry Clinical Practice. <i>Neuropsychiatric Disease and Treatment</i> , 2021 , 17, 1621-1631	3.1	3
132	Genome-wide association study accounting for anticholinergic burden to examine cognitive dysfunction in psychotic disorders. <i>Neuropsychopharmacology</i> , 2021 , 46, 1802-1810	8.7	3
131	Improving the predictive potential of diffusion MRI in schizophrenia using normative models-Towards subject-level classification. <i>Human Brain Mapping</i> , 2021 , 42, 4658-4670	5.9	3
130	Altered cerebral perfusion in bipolar disorder: A pCASL MRI study. <i>Bipolar Disorders</i> , 2021 , 23, 130-140	3.8	3

129	Biotyping in psychosis: using multiple computational approaches with one data set. <i>Neuropsychopharmacology</i> , 2021 , 46, 143-155	8.7	4
128	Elucidating the relationship between white matter structure, demographic, and clinical variables in schizophrenia-a multicenter harmonized diffusion tensor imaging study. <i>Molecular Psychiatry</i> , 2021 , 26, 5357-5370	15.1	2
127	White matter microstructure across brain-based biotypes for psychosis - findings from the bipolar-schizophrenia network for intermediate phenotypes. <i>Psychiatry Research - Neuroimaging</i> , 2021 , 308, 111234	2.9	4
126	Investigating Sexual Dimorphism of Human White Matter in a Harmonized, Multisite Diffusion Magnetic Resonance Imaging Study. <i>Cerebral Cortex</i> , 2021 , 31, 201-212	5.1	7
125	Regression dynamic causal modeling for resting-state fMRI. <i>Human Brain Mapping</i> , 2021 , 42, 2159-2180	5.9	12
124	Antisaccade error rates and gap effects in psychosis syndromes from bipolar-schizophrenia network for intermediate phenotypes 2 (B-SNIP2). <i>Psychological Medicine</i> , 2021 , 1-10	6.9	1
123	A Diagnosis and Biotype Comparison Across the Psychosis Spectrum: Investigating Volume and Shape Amygdala-Hippocampal Differences from the B-SNIP Study. <i>Schizophrenia Bulletin</i> , 2021 , 47, 1706	5 ¹ 1 ³ 717	1
122	Psychosis Biotypes: Replication and Validation from the B-SNIP Consortium. <i>Schizophrenia Bulletin</i> , 2021 ,	1.3	1
121	Subtyping Schizophrenia Patients Based on Patterns of Structural Brain Alterations. <i>Schizophrenia Bulletin</i> , 2021 ,	1.3	2
120	Auditory Oddball Responses Across the Schizophrenia-Bipolar Spectrum and Their Relationship to Cognitive and Clinical Features. <i>American Journal of Psychiatry</i> , 2021 , 178, 952-964	11.9	2
119	Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia. <i>Nature Neuroscience</i> , 2021 , 24, 186-196	25.5	9
118	Catechol-O-methyltransferase genotype differentially contributes to the flexibility and stability of cognitive sets in patients with psychotic disorders and their first-degree relatives. <i>Schizophrenia Research</i> , 2020 , 223, 236-241	3.6	1
117	185 The Safety and Tolerability of Lumateperone 42 mg for the Treatment of Schizophrenia: A Pooled Analysis of 3 Randomized Placebo-Controlled Trials. <i>CNS Spectrums</i> , 2020 , 25, 316-317	1.8	1
116	Do neurobiological differences exist between paranoid and non-paranoid schizophrenia? Findings from the bipolar schizophrenia network on intermediate phenotypes study. <i>Schizophrenia Research</i> , 2020 , 223, 96-104	3.6	1
115	Retinal layer abnormalities and their association with clinical and brain measures in psychotic disorders: A preliminary study. <i>Psychiatry Research - Neuroimaging</i> , 2020 , 299, 111061	2.9	10
114	The report of the joint WPA/CINP workgroup on the use and usefulness of antipsychotic medication in the treatment of schizophrenia. <i>CNS Spectrums</i> , 2020 , 1-25	1.8	6
113	Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3326-3336	11.5	86
112	NMDA receptor antibody seropositivity in psychosis: A pilot study from the Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP). <i>Schizophrenia Research</i> , 2020 , 218, 318-320	3.6	2

111	Testing Psychosis Phenotypes From Bipolar-Schizophrenia Network for Intermediate Phenotypes for Clinical Application: Biotype Characteristics and Targets. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2020 , 5, 808-818	3.4	13
110	Efficacy and Safety of Lumateperone for Treatment of Schizophrenia: A Randomized Clinical Trial. <i>JAMA Psychiatry</i> , 2020 , 77, 349-358	14.5	108
109	Smooth pursuit eye movement deficits as a biomarker for psychotic features in bipolar disorder-Findings from the PARDIP study. <i>Bipolar Disorders</i> , 2020 , 22, 602-611	3.8	6
108	Relationship of prolonged acoustic startle latency to diagnosis and biotype in the bipolar-schizophrenia network on intermediate phenotypes (B-SNIP) cohort. <i>Schizophrenia Research</i> , 2020 , 216, 357-366	3.6	5
107	Brain gray matter network organization in psychotic disorders. <i>Neuropsychopharmacology</i> , 2020 , 45, 66	68674	12
106	Associating Psychotic Symptoms with Altered Brain Anatomy in Psychotic Disorders Using Multidimensional Item Response Theory Models. <i>Cerebral Cortex</i> , 2020 , 30, 2939-2947	5.1	4
105	O10.6. ANTERIOR VERSUS POSTERIOR HIPPOCAMPUS WITHIN PSYCHOSIS: A BSNIP STUDY. Schizophrenia Bulletin, 2020 , 46, S26-S27	1.3	78
104	Resting state auditory-language cortex connectivity is associated with hallucinations in clinical and biological subtypes of psychotic disorders. <i>NeuroImage: Clinical</i> , 2020 , 27, 102358	5.3	2
103	O3.4. PSYCHOSIS PHENOTYPES FROM B-SNIP FOR CLINICAL ADVANCES: BIOTYPE CHARACTERISTICS AND TARGETS. <i>Schizophrenia Bulletin</i> , 2020 , 46, S7-S7	1.3	1
102	Cognitive Impairment and Diminished Neural Responses Constitute a Biomarker Signature of Negative Symptoms in Psychosis. <i>Schizophrenia Bulletin</i> , 2020 ,	1.3	8
101	Molecular alterations in the medial temporal lobe in schizophrenia. <i>Schizophrenia Research</i> , 2020 , 217, 71-85	3.6	10
100	Reduced GluN1 in mouse dentate gyrus is associated with CA3 hyperactivity and psychosis-like behaviors. <i>Molecular Psychiatry</i> , 2020 , 25, 2832-2843	15.1	12
99	Abnormal perfusion fluctuation and perfusion connectivity in bipolar disorder measured by dynamic arterial spin labeling. <i>Bipolar Disorders</i> , 2020 , 22, 401-410	3.8	2
98	Electrophysiological correlates of emotional scene processing in bipolar disorder. <i>Journal of Psychiatric Research</i> , 2020 , 120, 83-90	5.2	5
97	Characterizing functional regional homogeneity (ReHo) as a B-SNIP psychosis biomarker using traditional and machine learning approaches. <i>Schizophrenia Research</i> , 2020 , 215, 430-438	3.6	13
96	Common Data Elements for National Institute of Mental Health-Funded Translational Early Psychosis Research. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2020 , 5, 10-22	3.4	2
95	White matter abnormalities across the lifespan of schizophrenia: a harmonized multi-site diffusion MRI study. <i>Molecular Psychiatry</i> , 2020 , 25, 3208-3219	15.1	59
94	Sex-Specific Role for the Long Non-coding RNA LINC00473 in Depression. <i>Neuron</i> , 2020 , 106, 912-926.e	513.9	46

93	O2.3. INCREASED PROTEIN INSOLUBILITY IN BRAINS FROM A SUBSET OF PATIENTS WITH SCHIZOPHRENIA. <i>Schizophrenia Bulletin</i> , 2019 , 45, S163-S163	1.3	78
92	O9.5. EMOTIONAL SCENE PROCESSING IN PSYCHOSIS BIOTYPES: FINDINGS FROM THE BIPOLAR-SCHIZOPHRENIA NETWORK ON INTERMEDIATE PHENOTYPES (BSNIP). <i>Schizophrenia Bulletin</i> , 2019 , 45, S188-S188	1.3	78
91	BIPOLAR-SCHIZOPHRENIA NETWORK ON INTERMEDIATE PHENOTYPES (B-SNIP) STUDY USING	1.3	78
90	FREE-WATER IMAGING. Schizophrenia Bulletin, 2019, 45, \$195-\$195 NRXN1 is associated with enlargement of the temporal horns of the lateral ventricles in psychosis. Translational Psychiatry, 2019, 9, 230	8.6	7
89	Schizophrenia Exhibits Bi-directional Brain-Wide Alterations in Cortico-Striato-Cerebellar Circuits. <i>Cerebral Cortex</i> , 2019 , 29, 4463-4487	5.1	11
88	Association of Choroid Plexus Enlargement With Cognitive, Inflammatory, and Structural Phenotypes Across the Psychosis Spectrum. <i>American Journal of Psychiatry</i> , 2019 , 176, 564-572	11.9	36
87	10.3 INTRINSIC NEURAL ACTIVITY AS A BIOMARKER FOR DIFFERENTIAL TREATMENT EFFICACY IN PSYCHOSIS. <i>Schizophrenia Bulletin</i> , 2019 , 45, S103-S103	1.3	1
86	Cell type-specific epigenetic links to schizophrenia risk in the brain. <i>Genome Biology</i> , 2019 , 20, 135	18.3	38
85	Accelerated evolution of oligodendrocytes in the human brain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 24334-24342	11.5	24
84	Alterations in intrinsic fronto-thalamo-parietal connectivity are associated with cognitive control deficits in psychotic disorders. <i>Human Brain Mapping</i> , 2019 , 40, 163-174	5.9	10
83	Transdiagnostic dimensions of psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). <i>World Psychiatry</i> , 2019 , 18, 67-76	14.4	58
82	VGF and its C-terminal peptide TLQP-62 in ventromedial prefrontal cortex regulate depression-related behaviors and the response to ketamine. <i>Neuropsychopharmacology</i> , 2019 , 44, 971-9	87	18
81	Shared Genetic Risk of Schizophrenia and Gray Matter Reduction in 6p22.1. <i>Schizophrenia Bulletin</i> , 2019 , 45, 222-232	1.3	14
80	Associations between adolescent cannabis use and brain structure in psychosis. <i>Psychiatry Research - Neuroimaging</i> , 2018 , 276, 53-64	2.9	10
79	Polygenic risk for schizophrenia and measured domains of cognition in individuals with psychosis and controls. <i>Translational Psychiatry</i> , 2018 , 8, 78	8.6	30
78	Multivariate Relationships Between Cognition and Brain Anatomy Across the Psychosis Spectrum. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2018 , 3, 992-1002	3.4	13
77	Genetic analysis of deep phenotyping projects in common disorders. <i>Schizophrenia Research</i> , 2018 , 195, 51-57	3.6	7
76	Autism BrainNet: A network of postmortem brain banks established to facilitate autism research. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018 , 150, 31-39	3	4

75	New approaches in psychiatric drug development. European Neuropsychopharmacology, 2018, 28, 983-9	99 <u>B</u> 2	9
74	Peripheral oxytocin and vasopressin modulates regional brain activity differently in men and women with schizophrenia. <i>Schizophrenia Research</i> , 2018 , 202, 173-179	3.6	13
73	The association between mood state and chronobiological characteristics in bipolar I disorder: a naturalistic, variable cluster analysis-based study. <i>International Journal of Bipolar Disorders</i> , 2018 , 6, 5	5.4	8
72	Effects of genetic and environmental risk for schizophrenia on hippocampal activity and psychosis-like behavior in mice. <i>Behavioural Brain Research</i> , 2018 , 339, 114-123	3.4	3
71	9.3 PSYCHOSIS BIOTYPES VERSUS CLINICAL SYNDROMES THROUGH THE PRISM OF INTRINSIC NEURAL ACTIVITY. <i>Schizophrenia Bulletin</i> , 2018 , 44, S14-S14	1.3	78
70	T22. PITUITARY GLAND VOLUME DIFFERENCES IN INDIVIDUALS WITH PSYCHOSIS: RESULTS FROM THE BIPOLAR-SCHIZOPHRENIA NETWORK ON INTERMEDIATE PHENOTYPES (B-SNIP) STUDY. Schizophrenia Bulletin, 2018 , 44, S121-S121	1.3	78
69	VEGFA GENE variation influences hallucinations and frontotemporal morphology in psychotic disorders: a B-SNIP study. <i>Translational Psychiatry</i> , 2018 , 8, 215	8.6	6
68	Diverse Non-genetic, Allele-Specific Expression Effects Shape Genetic Architecture at the Cellular Level in the Mammalian Brain. <i>Neuron</i> , 2017 , 93, 1094-1109.e7	13.9	23
67	Identifying dynamic functional connectivity biomarkers using GIG-ICA: Application to schizophrenia, schizoaffective disorder, and psychotic bipolar disorder. <i>Human Brain Mapping</i> , 2017 , 38, 2683-2708	5.9	61
66	Intrinsic neural activity differences among psychotic illnesses. <i>Psychophysiology</i> , 2017 , 54, 1223-1238	4.1	10
65	Transdiagnostic Associations Between Functional Brain Network Integrity and Cognition. <i>JAMA Psychiatry</i> , 2017 , 74, 605-613	14.5	75
64	Sex differences in associations of arginine vasopressin and oxytocin with resting-state functional brain connectivity. <i>Journal of Neuroscience Research</i> , 2017 , 95, 576-586	4.4	13
63	Endophenotypes, Epigenetics, Polygenicity and More: Irv Gottesman's Dynamic Legacy. <i>Schizophrenia Bulletin</i> , 2017 , 43, 10-16	1.3	11
62	Impaired Context Processing is Attributable to Global Neuropsychological Impairment in Schizophrenia and Psychotic Bipolar Disorder. <i>Schizophrenia Bulletin</i> , 2017 , 43, 397-406	1.3	19
61	Novel transcriptional networks regulated by CLOCK in human neurons. <i>Genes and Development</i> , 2017 , 31, 2121-2135	12.6	19
60	Social stress induces neurovascular pathology promoting depression. <i>Nature Neuroscience</i> , 2017 , 20, 1752-1760	25.5	354
59	Neural complexity as a potential translational biomarker for psychosis. <i>Journal of Affective Disorders</i> , 2017 , 216, 89-99	6.6	27
58	Brain Structure Biomarkers in the Psychosis Biotypes: Findings From the Bipolar-Schizophrenia Network for Intermediate Phenotypes. <i>Biological Psychiatry</i> , 2017 , 82, 26-39	7.9	86

(2015-2017)

57	Strategies for Advancing Disease Definition Using Biomarkers and Genetics: The Bipolar and Schizophrenia Network for Intermediate Phenotypes. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2017 , 2, 20-27	3.4	31
56	Examining Functional Resting-State Connectivity in Psychosis and Its Subgroups in the Bipolar-Schizophrenia Network on Intermediate Phenotypes Cohort. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2016 , 1, 488-497	3.4	17
55	Aberrant H3.3 dynamics in NAc promote vulnerability to depressive-like behavior. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 12562-12567	11.5	32
54	Brain imaging demonstrates a reduced neural impact of eating in obesity. <i>Obesity</i> , 2016 , 24, 829-36	8	11
53	Impulsivity across the psychosis spectrum: Correlates of cortical volume, suicidal history, and social and global function. <i>Schizophrenia Research</i> , 2016 , 170, 80-6	3.6	31
52	Callosal Abnormalities Across the Psychosis Dimension: Bipolar Schizophrenia Network on Intermediate Phenotypes. <i>Biological Psychiatry</i> , 2016 , 80, 627-35	7.9	21
51	Identification of Distinct Psychosis Biotypes Using Brain-Based Biomarkers. <i>American Journal of Psychiatry</i> , 2016 , 173, 373-84	11.9	396
50	Polygenic risk for type 2 diabetes mellitus among individuals with psychosis and their relatives. <i>Journal of Psychiatric Research</i> , 2016 , 77, 52-8	5.2	20
49	Sex and diagnosis specific associations between DNA methylation of the oxytocin receptor gene with emotion processing and temporal-limbic and prefrontal brain volumes in psychotic disorders. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2016 , 1, 141-151	3.4	33
48	Multivariate Genetic Correlates of the Auditory Paired Stimuli-Based P2 Event-Related Potential in the Psychosis Dimension From the BSNIP Study. <i>Schizophrenia Bulletin</i> , 2016 , 42, 851-62	1.3	9
47	An epigenomics approach to individual differences and its translation to neuropsychiatric conditions. <i>Dialogues in Clinical Neuroscience</i> , 2016 , 18, 289-298	5.7	12
46	Cognitive Function in Individuals With Psychosis: Moderation by Adolescent Cannabis Use. <i>Schizophrenia Bulletin</i> , 2016 , 42, 1496-1503	1.3	18
45	Does Biology Transcend the Symptom-based Boundaries of Psychosis?. <i>Psychiatric Clinics of North America</i> , 2016 , 39, 165-74	3.1	24
44	COMT val158met polymorphism and molecular alterations in the human dorsolateral prefrontal cortex: Differences in controls and in schizophrenia. <i>Schizophrenia Research</i> , 2016 , 173, 94-100	3.6	7
43	ITI-007 for the Treatment of Schizophrenia: A 4-Week Randomized, Double-Blind, Controlled Trial. <i>Biological Psychiatry</i> , 2016 , 79, 952-61	7.9	115
42	Alterations in hippocampal connectivity across the psychosis dimension. <i>Psychiatry Research - Neuroimaging</i> , 2015 , 233, 148-57	2.9	60
41	Critical Role of Histone Turnover in Neuronal Transcription and Plasticity. <i>Neuron</i> , 2015 , 87, 77-94	13.9	163
40	Amygdala Hyperactivity at Rest in Paranoid Individuals With Schizophrenia. <i>American Journal of Psychiatry</i> , 2015 , 172, 784-92	11.9	48

39	Using biomarker batteries. <i>Biological Psychiatry</i> , 2015 , 77, 90-2	7.9	14
38	Event-related potential and time-frequency endophenotypes for schizophrenia and psychotic bipolar disorder. <i>Biological Psychiatry</i> , 2015 , 77, 127-36	7.9	52
37	Regressing to Prior Response Preference After Set Switching Implicates Striatal Dysfunction Across Psychotic Disorders: Findings From the B-SNIP Study. <i>Schizophrenia Bulletin</i> , 2015 , 41, 940-50	1.3	13
36	Joint Coupling of Awake EEG Frequency Activity and MRI Gray Matter Volumes in the Psychosis Dimension: A BSNIP Study. <i>Frontiers in Psychiatry</i> , 2015 , 6, 162	5	8
35	Large-Scale Fusion of Gray Matter and Resting-State Functional MRI Reveals Common and Distinct Biological Markers across the Psychosis Spectrum in the B-SNIP Cohort. <i>Frontiers in Psychiatry</i> , 2015 , 6, 174	5	18
34	Frequency-Specific Neural Signatures of Spontaneous Low-Frequency Resting State Fluctuations in Psychosis: Evidence From Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) Consortium. <i>Schizophrenia Bulletin</i> , 2015 , 41, 1336-48	1.3	69
33	Working memory impairment in probands with schizoaffective disorder and first degree relatives of schizophrenia probands extend beyond deficits predicted by generalized neuropsychological impairment. <i>Schizophrenia Research</i> , 2015 , 166, 310-5	3.6	19
32	Pursuit eye movements as an intermediate phenotype across psychotic disorders: Evidence from the B-SNIP study. <i>Schizophrenia Research</i> , 2015 , 169, 326-333	3.6	41
31	Correlations between brain structure and symptom dimensions of psychosis in schizophrenia, schizoaffective, and psychotic bipolar I disorders. <i>Schizophrenia Bulletin</i> , 2015 , 41, 154-62	1.3	76
	Multivariate analysis reveals genetic associations of the resting default mode network in psychotic		
30	bipolar disorder and schizophrenia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E2066-75	11.5	168
30 29	bipolar disorder and schizophrenia. Proceedings of the National Academy of Sciences of the United	11.5	168 67
	bipolar disorder and schizophrenia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E2066-75 Reduced levels of vasopressin and reduced behavioral modulation of oxytocin in psychotic		67
29	bipolar disorder and schizophrenia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E2066-75 Reduced levels of vasopressin and reduced behavioral modulation of oxytocin in psychotic disorders. <i>Schizophrenia Bulletin</i> , 2014 , 40, 1374-84	1.3	67
29	bipolar disorder and schizophrenia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E2066-75 Reduced levels of vasopressin and reduced behavioral modulation of oxytocin in psychotic disorders. <i>Schizophrenia Bulletin</i> , 2014 , 40, 1374-84 Approaching human neuroscience for disease understanding. <i>World Psychiatry</i> , 2014 , 13, 41-3 Behavioral response inhibition in psychotic disorders: diagnostic specificity, familiality and relation	1.3	6 ₇
29 28 27	bipolar disorder and schizophrenia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E2066-75 Reduced levels of vasopressin and reduced behavioral modulation of oxytocin in psychotic disorders. <i>Schizophrenia Bulletin</i> , 2014 , 40, 1374-84 Approaching human neuroscience for disease understanding. <i>World Psychiatry</i> , 2014 , 13, 41-3 Behavioral response inhibition in psychotic disorders: diagnostic specificity, familiality and relation to generalized cognitive deficit. <i>Schizophrenia Research</i> , 2014 , 159, 491-8	1.3 14.4 3.6	67547
29 28 27 26	bipolar disorder and schizophrenia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E2066-75 Reduced levels of vasopressin and reduced behavioral modulation of oxytocin in psychotic disorders. <i>Schizophrenia Bulletin</i> , 2014 , 40, 1374-84 Approaching human neuroscience for disease understanding. <i>World Psychiatry</i> , 2014 , 13, 41-3 Behavioral response inhibition in psychotic disorders: diagnostic specificity, familiality and relation to generalized cognitive deficit. <i>Schizophrenia Research</i> , 2014 , 159, 491-8 Etatenin mediates stress resilience through Dicer1/microRNA regulation. <i>Nature</i> , 2014 , 516, 51-5 Loss of pattern separation performance in schizophrenia suggests dentate gyrus dysfunction.	1.3 14.4 3.6 50.4	67 5 47 202
29 28 27 26 25	bipolar disorder and schizophrenia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E2066-75 Reduced levels of vasopressin and reduced behavioral modulation of oxytocin in psychotic disorders. <i>Schizophrenia Bulletin</i> , 2014 , 40, 1374-84 Approaching human neuroscience for disease understanding. <i>World Psychiatry</i> , 2014 , 13, 41-3 Behavioral response inhibition in psychotic disorders: diagnostic specificity, familiality and relation to generalized cognitive deficit. <i>Schizophrenia Research</i> , 2014 , 159, 491-8 Etatenin mediates stress resilience through Dicer1/microRNA regulation. <i>Nature</i> , 2014 , 516, 51-5 Loss of pattern separation performance in schizophrenia suggests dentate gyrus dysfunction. <i>Schizophrenia Research</i> , 2014 , 159, 193-7 Local gyrification index in probands with psychotic disorders and their first-degree relatives.	1.3 14.4 3.6 50.4 3.6	67 5 47 202 71

(2003-2014)

21	Bipolar and schizophrenia network for intermediate phenotypes: outcomes across the psychosis continuum. <i>Schizophrenia Bulletin</i> , 2014 , 40 Suppl 2, S131-7	1.3	102
20	Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition. <i>Neuron</i> , 2014 , 84, 997-1008	13.9	60
19	Elevated antisaccade error rate as an intermediate phenotype for psychosis across diagnostic categories. <i>Schizophrenia Bulletin</i> , 2014 , 40, 1011-21	1.3	58
18	Medial temporal lobe structures and hippocampal subfields in psychotic disorders: findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. <i>JAMA Psychiatry</i> , 2014 , 71, 769-77	14.5	142
17	Neuropsychological impairments in schizophrenia and psychotic bipolar disorder: findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. <i>American Journal of Psychiatry</i> , 2013 , 170, 1275-84	11.9	251
16	Psychosis is emerging as a learning and memory disorder. <i>Neuropsychopharmacology</i> , 2013 , 38, 247	8.7	14
15	Clinical phenotypes of psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). <i>American Journal of Psychiatry</i> , 2013 , 170, 1263-74	11.9	217
14	Hippocampal novelty activations in schizophrenia: disease and medication effects. <i>Schizophrenia Research</i> , 2012 , 138, 157-63	3.6	23
13	The Wechsler ACS Social Perception Subtest: A Preliminary Comparison With Other Measures of Social Cognition. <i>Journal of Psychoeducational Assessment</i> , 2012 , 30, 455-465	1.3	23
12	Glutamate dysfunction in hippocampus: relevance of dentate gyrus and CA3 signaling. <i>Schizophrenia Bulletin</i> , 2012 , 38, 927-35	1.3	92
11	The hippocampal formation in schizophrenia. American Journal of Psychiatry, 2010, 167, 1178-93	11.9	403
10	AKT signaling within the ventral tegmental area regulates cellular and behavioral responses to stressful stimuli. <i>Biological Psychiatry</i> , 2008 , 64, 691-700	7.9	130
9	The neuropharmacology of psychosis. <i>Schizophrenia Bulletin</i> , 2007 , 33, 937-46	1.3	19
8	Schizophrenia Research: the 11th Congress on Current Research. Future Neurology, 2007 , 2, 495-497	1.5	
7	Frontal cortex function. American Journal of Psychiatry, 2004, 161, 2178	11.9	31
6	Measurement and treatment research to improve cognition in schizophrenia: neuropharmacological aspects. <i>Psychopharmacology</i> , 2004 , 174, 1	4.7	40
5	The human brain. American Journal of Psychiatry, 2004, 161, 1169	11.9	1
4	Schizophrenia, I. American Journal of Psychiatry, 2003, 160, 846	11.9	1

The science of antipsychotics: mechanistic insight. CNS Spectrums, 2003, 8, 5-9

1.8 10

Evaluating glutamatergic transmission in schizophrenia. *Annals of the New York Academy of Sciences*, **2003**, 1003, 113-8

5.5 42

Similarities and differences among antipsychotics. Journal of Clinical Psychiatry, **2003**, 64 Suppl 17, 7-10 $_{4.6}$ $_{2}$