
Baoyu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5442335/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	WASP family proteins: Molecular mechanisms and implications in human disease. European Journal of Cell Biology, 2022, 101, 151244.	3.6	19
2	WAVE regulatory complex. Current Biology, 2021, 31, R512-R517.	3.9	60
3	A two-step actin polymerization mechanism drives dendrite branching. Neural Development, 2021, 16, 3.	2.4	10
4	HEM1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease. Science, 2020, 369, 202-207.	12.6	65
5	Endosomal receptor trafficking: Retromer and beyond. Traffic, 2018, 19, 578-590.	2.7	133
6	A Dendritic Guidance Receptor Complex Brings Together Distinct Actin Regulators to Drive Efficient F-Actin Assembly and Branching. Developmental Cell, 2018, 45, 362-375.e3.	7.0	56
7	Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites. ELife, 2017, 6, .	6.0	129
8	Fat2 acts through the WAVE regulatory complex to drive collective cell migration during tissue rotation. Journal of Cell Biology, 2016, 212, 591-603.	5.2	54
9	Biochemical Reconstitution of the WAVE Regulatory Complex. Methods in Enzymology, 2014, 540, 55-72.	1.0	20
10	Local F-actin Network Links Synapse Formation and Axon Branching. Cell, 2014, 156, 208-220.	28.9	128
11	The WAVE Regulatory Complex Links Diverse Receptors to the Actin Cytoskeleton. Cell, 2014, 156, 195-207.	28.9	260
12	Ena/VASP Proteins Cooperate with the WAVE Complex to Regulate the Actin Cytoskeleton. Developmental Cell, 2014, 30, 569-584.	7.0	101
13	Phase transitions in the assembly of multivalent signalling proteins. Nature, 2012, 483, 336-340.	27.8	1,938
14	Engagement of Arginine Finger to ATP Triggers Large Conformational Changes in NtrC1 AAA+ ATPase for Remodeling Bacterial RNA Polymerase. Structure, 2010, 18, 1420-1430.	3.3	49
15	The WAVE regulatory complex is inhibited. Nature Structural and Molecular Biology, 2009, 16, 561-563.	8.2	135
16	ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of <i>Escherichia coli</i> . FEBS Journal, 2009, 276, 807-815.	4.7	8
17	Sequential Action of ATP on the Enhancer Binding AAA+ ATPase NtrC1. FASEB Journal, 2009, 23, 495.21.	0.5	0
18	Regulation and action of the bacterial enhancer-binding protein AAA+ domains. Biochemical Society Transactions, 2008, 36, 89-93.	3.4	16

ΒΑΟΥU CHEN

#	Article	IF	CITATIONS
19	ATP Ground- and Transition States of Bacterial Enhancer Binding AAA+ ATPases Support Complex Formation with Their Target Protein, Ï f 54. Structure, 2007, 15, 429-440.	3.3	64
20	The structural basis for regulated assembly and function of the transcriptional activator NtrC. Genes and Development, 2006, 20, 1485-1495.	5.9	109
21	Molecular mechanisms of hormonal activity. I. receptors. neuromediators. systems with second messengers. Biochemistry (Moscow), 2005, 70, 24-39.	1.5	Ο
22	Negative Regulation of AAA+ ATPase Assembly by Two Component Receiver Domains: A Transcription Activation Mechanism that is Conserved in Mesophilic and Extremely Hyperthermophilic Bacteria. Journal of Molecular Biology, 2005, 353, 242-255.	4.2	53
23	Evidence for proximal cysteine and lysine residues at or near the ative site of arginine kinase of Stichopus japonicus. Biochemistry (Moscow), 2004, 69, 1336-1343.	1.5	10
24	Urea Induced Inactivation and Unfolding of Arginine Kinase from the Sea Cucumber Stichopus japonicus. Biochemistry (Moscow), 2003, 68, 1267-1271.	1.5	5
25	Multiple effects of chemical reagent on enzyme: o-phthalaldehyde-induced inactivation, dissociation and partial unfolding of lactate dehydrogenase from pig heart. International Journal of Biological Macromolecules, 2003, 32, 191-197.	7.5	8
26	Expression, purification, and characterization of arginine kinase from the sea cucumber Stichopus japonicus. Protein Expression and Purification, 2003, 29, 230-234.	1.3	24
27	Inactivation and conformational changes of lactate dehydrogenase from porcine heart in sodium dodecyl sulfate solutions. International Journal of Biological Macromolecules, 2002, 31, 97-102.	7.5	9
28	p-Chloromercuribenzoate-induced inactivation and partial unfolding of porcine heart lactate dehydrogenase. Biochemistry (Moscow), 2002, 67, 583-587.	1.5	3