
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5442279/publications.pdf Version: 2024-02-01

AMY | CDEED

#	Article	IF	CITATIONS
1	Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada. Cmaj, 2020, 192, E497-E505.	2.0	326
2	Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza. Cmaj, 2010, 182, 131-136.	2.0	212
3	Optimal Pandemic Influenza Vaccine Allocation Strategies for the Canadian Population. PLoS ONE, 2010, 5, e10520.	2.5	84
4	An IDEA for Short Term Outbreak Projection: Nearcasting Using the Basic Reproduction Number. PLoS ONE, 2013, 8, e83622.	2.5	82
5	A case-crossover analysis of the impact of weather on primary cases of Middle East respiratory syndrome. BMC Infectious Diseases, 2019, 19, 113.	2.9	73
6	Testing a key assumption of hostâ€pathogen theory: density and disease transmission. Oikos, 2008, 117, 1667-1673.	2.7	57
7	Why "Winter―Vomiting Disease? Seasonality, Hydrology, and Norovirus Epidemiology in Toronto, Canada. EcoHealth, 2009, 6, 192-199.	2.0	49
8	Socio-demographic disparities in knowledge, practices, and ability to comply with COVID-19 public health measures in Canada. Canadian Journal of Public Health, 2021, 112, 363-375.	2.3	40
9	Modelling scenarios of the epidemic of COVID-19 in Canada. Canada Communicable Disease Report, 2020, 46, 198-204.	1.3	39
10	Bidirectional impact of imperfect mask use on reproduction number of COVID-19: A next generation matrix approach. Infectious Disease Modelling, 2020, 5, 405-408.	1.9	38
11	The Impact of Demographic Variables on Disease Spread: Influenza in Remote Communities. Scientific Reports, 2011, 1, .	3.3	30
12	Current and Projected Distributions of <i>Aedes aegypti</i> and <i>Ae. albopictus</i> in Canada and the U.S Environmental Health Perspectives, 2020, 128, 57007.	6.0	27
13	Use of Models to Identify Cost-effective Interventions: Pertussis Vaccination for Pediatric Health Care Workers. Pediatrics, 2011, 128, e591-e599.	2.1	25
14	Assessing the impact of environmental exposures and Cryptosporidium infection in cattle on human incidence of cryptosporidiosis in Southwestern Ontario, Canada. PLoS ONE, 2018, 13, e0196573.	2.5	23
15	The Prevalence of <i>Campylobacter</i> in Live Cattle, Turkey, Chicken, and Swine in the United States and Canada: A Systematic Review and Meta-Analysis. Foodborne Pathogens and Disease, 2021, 18, 230-242.	1.8	22
16	Effect of latitude on the rate of change in incidence of Lyme disease in the United States. CMAJ Open, 2013, 1, E43-E47.	2.4	20
17	Derivation and Validation of Clinical Prediction Rules for COVID-19 Mortality in Ontario, Canada. Open Forum Infectious Diseases, 2020, 7, ofaa463.	0.9	20
18	Owned dog ecology and demography in Villa de Tezontepec, Hidalgo, Mexico. Preventive Veterinary Medicine, 2016, 135, 37-46.	1.9	19

#	Article	IF	CITATIONS
19	Risk for COVID-19 Resurgence Related to Duration and Effectiveness of Physical Distancing in Ontario, Canada. Annals of Internal Medicine, 2020, 173, 675-678.	3.9	19
20	A sub-national real-time epidemiological and vaccination database for the COVID-19 pandemic in Canada. Scientific Data, 2021, 8, 173.	5.3	19
21	COVID-19 Case Age Distribution: Correction for Differential Testing by Age. Annals of Internal Medicine, 2021, 174, 1430-1438.	3.9	19
22	The Complex Relationship Between Veterinarian Mental Health and Client Satisfaction. Frontiers in Veterinary Science, 2020, 7, 92.	2.2	16
23	Quantifying contact patterns in response to COVID-19 public health measures in Canada. BMC Public Health, 2021, 21, 2040.	2.9	12
24	Stochastic agent-based modeling of tuberculosis in Canadian Indigenous communities. BMC Public Health, 2017, 17, 73.	2.9	11
25	Modelling the transmission dynamics of <i>Campylobacter</i> in Ontario, Canada, assuming house flies, <i>Musca domestica</i> , are a mechanical vector of disease transmission. Royal Society Open Science, 2019, 6, 181394.	2.4	11
26	Using a Dynamic Model to Consider Optimal Antiviral Stockpile Size in the Face of Pandemic Influenza Uncertainty. PLoS ONE, 2013, 8, e67253.	2.5	10
27	Age Is Just a Number: A Critically Important Number for COVID-19 Case Fatality. Annals of Internal Medicine, 2020, 173, 762-763.	3.9	10
28	Descriptive and network analyses of the equine contact network at an equestrian show in Ontario, Canada and implications for disease spread. BMC Veterinary Research, 2017, 13, 191.	1.9	9
29	The Influence of Climate and Livestock Reservoirs on Human Cases of Giardiasis. EcoHealth, 2019, 16, 116-127.	2.0	9
30	Evaluation of an OPEN Stewardship generated feedback intervention to improve antibiotic prescribing among primary care veterinarians in Ontario, Canada and Israel: protocol for evaluating usability and an interrupted time-series analysis. BMJ Open, 2021, 11, e039760.	1.9	9
31	Spatio-Temporal Variation in the Prevalence of Major Mastitis Pathogens Isolated From Bovine Milk Samples Between 2008 and 2017 in Ontario, Canada. Frontiers in Veterinary Science, 2021, 8, 742696.	2.2	9
32	Can informal social distancing interventions minimize demand for antiviral treatment during a severe pandemic?. BMC Public Health, 2013, 13, 669.	2.9	8
33	Early vaccine availability represents an important public health advance for the control of pandemic influenza. BMC Research Notes, 2015, 8, 191.	1.4	8
34	Do fatal infectious diseases eradicate host species?. Journal of Mathematical Biology, 2018, 77, 2103-2164.	1.9	8
35	Modeling the effect of surgical sterilization on owned dog population size in Villa de Tezontepec, Hidalgo, Mexico, using an individual-based computer simulation model. PLoS ONE, 2018, 13, e0198209.	2.5	8
36	Understanding the early dynamics of the 2014 porcine epidemic diarrhea virus (PEDV) outbreak in Ontario using the incidence decay and exponential adjustment (IDEA) model. BMC Veterinary Research, 2016, 13, 8.	1.9	7

#	Article	IF	CITATIONS
37	Descriptive analysis of horse movement networks during the 2015 equestrian season in Ontario, Canada. PLoS ONE, 2019, 14, e0219771.	2.5	7
38	Comparing the effects of non-homogenous mixing patterns on epidemiological outcomes in equine populations: A mathematical modelling study. Scientific Reports, 2019, 9, 3227.	3.3	7
39	The prevalence of <i>Cyclospora cayetanensis</i> in water: a systematic review and meta-analysis. Epidemiology and Infection, 2022, 150, .	2.1	7
40	Punching Above Their Weight. Sexually Transmitted Diseases, 2009, 36, 9-10.	1.7	6
41	Times from Infection to Disease-Induced Death and their Influence on Final Population Sizes After Epidemic Outbreaks. Bulletin of Mathematical Biology, 2018, 80, 1937-1961.	1.9	6
42	Zika virus outbreak in Brazil under current and future climate. Epidemics, 2021, 37, 100491.	3.0	6
43	Antiviral Strategies for Emerging Influenza Viruses in Remote Communities. PLoS ONE, 2014, 9, e89651.	2.5	6
44	Ranavirus Amplification in Low-Diversity Amphibian Communities. Frontiers in Veterinary Science, 2022, 9, 755426.	2.2	6
45	Comparison of the dynamic networks of four equine boarding and training facilities. Preventive Veterinary Medicine, 2019, 162, 84-94.	1.9	5
46	Validation of modified radio-frequency identification tag firmware, using an equine population case study. PLoS ONE, 2019, 14, e0210148.	2.5	5
47	An investigation of transportation practices in an Ontario swine system using descriptive network analysis. PLoS ONE, 2020, 15, e0226813.	2.5	5
48	Examining the Effect of Host Recruitment Rates on the Transmission of Streptococcus suis in Nursery Swine Populations. Pathogens, 2020, 9, 174.	2.8	5
49	Estimating the potential for disease spread in horses associated with an equestrian show in Ontario, Canada using an agent-based model. Preventive Veterinary Medicine, 2018, 151, 21-28.	1.9	4
50	Evaluating the Within-Host Dynamics of Ranavirus Infection with Mechanistic Disease Models and Experimental Data. Viruses, 2019, 11, 396.	3.3	4
51	Equine Rhinitis A Virus Infection at a Standardbred Training Facility: Incidence, Clinical Signs, and Risk Factors for Clinical Disease. Frontiers in Veterinary Science, 2019, 6, 71.	2.2	4
52	Identifying the environmental drivers of Campylobacter infection risk in southern Ontario, Canada using a One Health approachs. Zoonoses and Public Health, 2020, 67, 516-524.	2.2	4
53	A within-host mathematical model of H9N2 avian influenza infection and type-I interferon response pathways in chickens. Journal of Theoretical Biology, 2020, 499, 110320.	1.7	4
54	Yellow fever virus outbreak in Brazil under current and future climate. Infectious Disease Modelling, 2021, 6, 664-677.	1.9	4

#	Article	IF	CITATIONS
55	Frequency and patterns of exposure to live poultry and the potential risk of avian influenza transmission to humans in urban Bangladesh. Scientific Reports, 2021, 11, 21880.	3.3	4
56	A longitudinal study describing horse demographics and movements during a competition season in Ontario, Canada. Canadian Veterinary Journal, 2018, 59, 783-790.	0.0	4
57	Increased Weekly Mean PM2.5, and NO2 Are Associated With Increased Proportions of Lower Airway Granulocytes in Ontario Horses. Frontiers in Veterinary Science, 2020, 7, 185.	2.2	3
58	Population Health Surveillance Using Mobile Phone Surveys in Low- and Middle-Income Countries: Methodology and Sample Representativeness of a Cross-sectional Survey of Live Poultry Exposure in Bangladesh. JMIR Public Health and Surveillance, 2021, 7, e29020.	2.6	3
59	Modeling livestock population structure: a geospatial database for Ontario swine farms. BMC Veterinary Research, 2018, 14, 31.	1.9	2
60	Shaping the future of the COVID-19 pandemic in Canada. Cmaj, 2020, 192, E1074-E1075.	2.0	2
61	Sporadic SARS-CoV-2 cases at the neighbourhood level in Toronto, Ontario, 2020: a spatial analysis of the early pandemic period. CMAJ Open, 2022, 10, E190-E195.	2.4	2
62	Epidemiology of norovirus and viral gastroenteritis in Ontario, Canada, 2009–2014. Canada Communicable Disease Report, 2021, 47, 397-404.	1.3	1
63	Classification of porcine reproductive and respiratory syndrome virus in Ontario using Bayesian phylogenetics and assessment of temporal trends. Canadian Journal of Veterinary Research, 2021, 85, 83-92.	0.2	1
64	Within-host model of respiratory virus shedding and antibody response to H9N2 avian influenza virus vaccination and infection in chickens. Infectious Disease Modelling, 2021, 6, 490-502.	1.9	0
65	Modelling the introduction and transmission of <i>Campylobacter</i> in a North American chicken flock. Zoonoses and Public Health, 2022, 69, 23-32.	2.2	0
66	Using a computer simulation model to examine the impact of biosecurity measures during a facility-level outbreak of equine influenza. Canadian Journal of Veterinary Research, 2018, 82, 89-96.	0.2	0
67	Descriptive network analysis of a Standardbred horse training facility contact network: Implications for disease transmission. Canadian Veterinary Journal, 2020, 61, 853-859.	0.0	0
68	Diagnostic testing patterns for subsp. in Ontario horses during the years 2008 to 2018. Canadian Veterinary Journal, 2021, 62, 629-636.	0.0	0
69	Examining the role of person-to-person transmission during a verocytotoxigenic Escherichia coli outbreak in Ontario, Canada. BMC Research Notes, 2022, 15, .	1.4	0