John-Arvid Grytnes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5442248/publications.pdf

Version: 2024-02-01

70 papers 7,290 citations

147801 31 h-index 102487 66 g-index

72 all docs 72 docs citations

times ranked

72

10895 citing authors

#	Article	IF	CITATIONS
1	Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 2010, 13, 1310-1324.	6.4	1,387
2	The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 2013, 88, 15-30.	10.4	1,224
3	Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 2018, 556, 231-234.	27.8	580
4	21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 2011, 17, 2330-2341.	9.5	478
5	Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 2002, 11, 291-301.	5 . 8	332
6	Topographyâ€driven isolation, speciation and a global increase of endemism with elevation. Global Ecology and Biogeography, 2016, 25, 1097-1107.	5 . 8	243
7	Title is missing!. Journal of Paleolimnology, 2002, 28, 161-179.	1.6	169
8	A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. Journal of Biogeography, 2007, 34, 1907-1915.	3.0	157
9	Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Review of Palaeobotany and Palynology, 2016, 228, 1-25.	1.5	152
10	Resurveying historical vegetation data $\hat{a} \in \text{``opportunities'}$ and challenges. Applied Vegetation Science, 2017, 20, 164-171.	1.9	136
11	Recent vegetation changes at the highâ€latitude tree line ecotone are controlled by geomorphological disturbance, productivity and diversity. Global Ecology and Biogeography, 2010, 19, 810-821.	5 . 8	118
12	Identifying the driving factors behind observed elevational range shifts on <scp>E</scp> uropean mountains. Global Ecology and Biogeography, 2014, 23, 876-884.	5 . 8	110
13	Testing the novelty effect of an m-learning tool on internalization and achievement: A Self-Determination Theory approach. Computers and Education, 2019, 128, 398-413.	8.3	95
14	An indirect area effect on elevational species richness patterns. Ecography, 2007, 30, 440-448.	4.5	92
15	The importance of host tree age, size and growth rate as determinants of epiphytic lichen diversity in boreal spruce forests. Biodiversity and Conservation, 2009, 18, 3579-3596.	2.6	91
16	The effect of a mobile-application tool on biology students' motivation and achievement in species identification: A Self-Determination Theory perspective. Computers and Education, 2017, 107, 1-12.	8.3	88
17	Upward shift in elevational plant species ranges in Sikkilsdalen, central Norway. Ecography, 2012, 35, 922-932.	4.5	85
18	Different evolutionary histories underlie congruent species richness gradients of birds and mammals. Journal of Biogeography, 2012, 39, 825-841.	3.0	84

#	Article	IF	CITATIONS
19	Palaeolimnological evidence for recent climatic change in lakes from the northern Urals, arctic Russia. Journal of Paleolimnology, 2005, 33, 463-482.	1.6	79
20	Modern pollen–plant richness and diversity relationships exist along a vegetational gradient in southern Norway. Holocene, 2016, 26, 163-175.	1.7	75
21	The effects of mâ€learning on motivation, achievement and wellâ€being: A Selfâ€Determination Theory approach. British Journal of Educational Technology, 2019, 50, 669-683.	6.3	70
22	Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient. Ecology, 2018, 99, 148-157.	3.2	66
23	Elevational Trends in Biodiversity. , 2007, , 1-8.		61
24	Fine-scale changes in vegetation composition in a boreal mire over 50â€∫years. Journal of Ecology, 2011, 99, 1179-1189.	4.0	57
25	The relative importance of positive and negative interactions for pollinator attraction in a plant community. Ecological Research, 2009, 24, 929-936.	1.5	52
26	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	5.8	49
27	Resurvey of historical vegetation plots: a tool for understanding longâ€ŧerm dynamics of plant communities. Applied Vegetation Science, 2017, 20, 161-163.	1.9	48
28	Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands. Journal of Biogeography, 2020, 47, 72-86.	3.0	42
29	Dispersal ability links to crossâ€scale species diversity patterns across the Eurasian Arctic tundra. Global Ecology and Biogeography, 2012, 21, 851-860.	5.8	41
30	Disjunct populations of <scp>E</scp> uropean vascular plant species keep the same climatic niches. Global Ecology and Biogeography, 2015, 24, 1401-1412.	5.8	39
31	Scale sensitivity of the relationship between alpha and gamma diversity along an alpine elevation gradient in central Nepal. Journal of Biogeography, 2018, 45, 804-814.	3.0	34
32	Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 2021, 32, e13050.	2.2	34
33	The midâ€domain effect matters: simulation analyses of rangeâ€size distribution data from Mount Kinabalu, Borneo. Journal of Biogeography, 2008, 35, 2138-2147.	3.0	32
34	Invasion of Norway spruce diversifies the fire regime in boreal European forests. Journal of Ecology, 2011, 99, 395-403.	4.0	30
35	Are fossil assemblages in a single sediment core from a small lake representative of total deposition of mite, chironomid, and plant macrofossil remains?. Journal of Paleolimnology, 2012, 48, 669-691.	1.6	30
36	The relationship between vegetation composition, vegetation zones and modern pollen assemblages in Setesdal, southern Norway. Holocene, 2014, 24, 985-1001.	1.7	29

#	Article	IF	CITATIONS
37	Fineâ€scale distribution and abundance of epiphytic lichens: environmental filtering or local dispersal dynamics?. Journal of Vegetation Science, 2012, 23, 459-470.	2.2	27
38	Effects of prescribed burning on carabid beetle diversity in coastal anthropogenic heathlands. Biodiversity and Conservation, 2015, 24, 2565-2581.	2.6	27
39	Plant species composition shifts in the Tatra Mts as a response to environmental change: a resurvey study after 90 years. Folia Geobotanica, 2018, 53, 333-348.	0.9	25
40	Using Museum Collections to Estimate Diversity Patterns along Geographical Gradients. Folia Geobotanica, 2008, 43, 357-369.	0.9	24
41	Changes in arctic vegetation on <scp>J</scp> an <scp>M</scp> ayen <scp>I</scp> sland over 19 and 80Âyears. Journal of Vegetation Science, 2012, 23, 771-781.	2.2	23
42	The European Forest Plant Species List (EuForPlant): Concept and applications. Journal of Vegetation Science, 2022, 33, .	2.2	23
43	Species trait selection along a prescribed fire chronosequence. Insect Conservation and Diversity, 2016, 9, 446-455.	3.0	21
44	Conservation of epiphytes: Single large or several small host trees?. Biological Conservation, 2013, 168, 144-151.	4.1	20
45	Downhill shift of alpine plant assemblages under contemporary climate and landâ€use changes. Ecosphere, 2018, 9, e02084.	2.2	20
46	Productivity–diversity patterns in arctic tundra vegetation. Ecography, 2013, 36, 331-341.	4.5	19
47	Invertebrate communities inhabiting nests of migrating passerine, wild fowl and sea birds breeding in the High Arctic, Svalbard. Polar Biology, 2014, 37, 981-998.	1.2	18
48	Fineâ€grain beta diversity of Palaearctic grassland vegetation. Journal of Vegetation Science, 2021, 32, e13045.	2.2	18
49	Large climate change, large effect? Vegetation changes over the past century in the European High Arctic. Applied Vegetation Science, 2017, 20, 204-214.	1.9	16
50	Effects of grazing abandonment and climate change on mountain summits flora: a case study in the Tatra Mts. Plant Ecology, 2018, 219, 261-276.	1.6	16
51	Do composition and richness of woody plants vary between gaps and closed canopy patches in subtropical forests?. Journal of Vegetation Science, 2016, 27, 1129-1139.	2.2	15
52	GrassPlot v. 2.00 \hat{a} €" first update on the database of multi-scale plant diversity in Palaearctic grasslands. , 2019, , 26-47.		15
53	Are diversity trends in western Scandinavia influenced by postâ€glacial dispersal limitation?. Journal of Vegetation Science, 2018, 29, 360-370.	2.2	14
54	The effects of a goal-framing and need-supportive app on undergraduates' intentions, effort, and achievement in mobile science learning. Computers and Education, 2020, 159, 104022.	8.3	14

#	Article	IF	Citations
55	Altitudinal species richness patterns of vascular plants in the south-eastern Pyrenees and nearby mountains of Catalonia. Plant Ecology and Diversity, 2012, 5, 115-126.	2.4	11
56	Elevational Trends in Biodiversity. , 2013, , 149-154.		11
57	Long-term vegetation stability in northern Europe as assessed by changes in species co-occurrences. Plant Ecology and Diversity, 2013, 6, 289-302.	2.4	11
58	An intercontinental comparison of niche conservatism along a temperature gradient. Journal of Biogeography, 2018, 45, 1104-1113.	3.0	11
59	Testing the METUX Model in Higher Education: Interface and Task Need–Satisfaction Predict Engagement, Learning, and Well-Being. Frontiers in Psychology, 2021, 12, 631564.	2.1	10
60	Alpine vegetation and species-richness patterns along two altitudinal gradients in the Gyama Valley, south-central Tibet, China. Plant Ecology and Diversity, 2010, 3, 235-247.	2.4	9
61	The bird ectoparasite Dermanyssus hirundinis (Acari, Mesostigmata) in the High Arctic; a new parasitic mite to Spitsbergen, Svalbard. Acta Parasitologica, 2012, 57, 378-84.	1.1	9
62	Scale dependence of species–area relationships is widespread but generally weak in Palaearctic grasslands. Journal of Vegetation Science, 2021, 32, e13044.	2.2	8
63	Traitâ€based responses to land use and canopy dynamics modify longâ€ŧerm diversity changes in forest understories. Global Ecology and Biogeography, 2021, 30, 1863-1875.	5.8	7
64	Stability of alpine vegetation over 50 years in central Norway. Folia Geobotanica, 2015, 50, 39-48.	0.9	6
65	Rarefaction and elevational richness pattern: a case study in a high tropical island (New Caledonia,) Tj ETQq1 1 C).784314 ı 2.2	gBŢ /Overlo
66	Is palaeoecology a â€~special branch' of ecology?. Holocene, 2015, 25, 17-24.	1.7	5
67	Diver-operated suction sampling in Norwegian cobble grounds: technique and associated fauna. Crustaceana, 2015, 88, 184-202.	0.3	4
68	Diversity patterns in a diversity hotspot. Applied Vegetation Science, 2014, 17, 381-383.	1.9	3
69	Using Red List species in designating protection status to forest areas: a case study on the problem of spatio-temporal dynamics. Biodiversity and Conservation, 2020, 29, 3429-3443.	2.6	3
70	Weighted average regression and environmental calibration as a tool for quantifying climate-driven changes in vegetation. Journal of Plant Ecology, 2019, 12, 460-473.	2.3	0